More stories

  • in

    Vikings may have fled Greenland to escape rising seas

    In 1721, a Norwegian missionary set sail for Greenland in the hopes of converting the Viking descendants living there to Protestantism. When he arrived, the only traces he found of the Nordic society were ruins of settlements that had been abandoned 300 years earlier.

    There is no written record to explain why the Vikings left or died out. But a new simulation of Greenland’s coastline reveals that as the ice sheet covering most of the island started to expand around that time, sea levels rose drastically, researchers report December 15 at the American Geophysical Union’s fall meeting in New Orleans.

    These shifting coastlines would have inundated grazing areas and farmland, and could have helped bring about the end of the Nordic way of life in Greenland, says Marisa Borreggine, a geophysicist at Harvard University.

    Greenland was first colonized by Vikings in 985 by a group of settlers in 14 ships led by Erik the Red, who had been banished from neighboring Iceland for manslaughter. Erik and his followers settled across southern Greenland, where they and their descendants hunted for seals, grazed livestock, built churches and traded walrus ivory with European mainlanders.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    The settlers arrived during what’s known as the Medieval Warm Period, when conditions across Europe and Greenland were temperate for a handful of centuries (SN: 7/24/19). But by 1350, the climate had started taking a turn for the worse with the beginning of the Little Ice Age, a period of regional cooling that lasted well into the 19th century.

    Researchers have long speculated that a rapidly changing climate could have dealt a blow to Greenland’s Norse society. The island probably became much colder in the last 100 years of Norse occupation, says paleoclimatologist Boyang Zhao at Brown University in Providence, R.I, who was not involved in the new research. Lower temperatures could have made farming and raising livestock more difficult, he says. 

    These lower temperatures would have had another impact on Greenland: the steady expansion of the island’s ice sheet, Borreggine and colleagues say.

    Though rising sea levels usually go hand in hand with ice melting from ice sheets, oceans do not rise and fall uniformly in every place, Borreggine says. Around Greenland, sea level tends to rise when the ice sheet there grows.

    This is for two main reasons: First, ice is heavy. The sheer weight of the ice sheet pushes the land it rests on down, meaning that as the ice sheet grows, more land is submerged. Second is gravity. Being massive, ice sheets exert some gravitational pull on nearby water. This makes the seawater around Greenland tilt upward toward the ice, meaning that water closer to the coast is higher than water in the open ocean. As the ice sheet grows, that pull becomes even stronger, and sea level close to the coast rises further.

    Simulating the impact of the weight of the ice and its tug on Greenland’s waters, Borreggine and their colleagues found that sea level rose enough to flood the coast by hundreds of meters in some areas. Between the time the Vikings arrived and when they left, there was “pretty intense coastal flooding, such that certain pieces of land that were connected to each other were no longer connected,” they say.  

    Today, some Viking sites are being inundated as a result of the overall rise in global sea level from climate change, which is being only marginally offset around Greenland by its melting ice sheet. Something similar could have happened back in the 14th and 15th centuries, destroying land that the Norse relied on for farming and grazing, Borreggine says.

    “Previous theories about why Vikings left have really focused on the idea that they all died because it got really cold, and they were too dumb to adapt,” Borreggine says. But they say that archaeological digs have revealed a far more nuanced story, showing that Greenland’s Norse people did change their lifestyle by increasingly relying on seafood in the last century of their occupation.

    But learning to adapt may have been too difficult in the face of an increasingly harsh landscape. The idea that rising sea levels may have been one of these challenges has merit, Zhao says, noting that the reasons why the Vikings disappeared from Greenland is nuanced.

    As the climate changed, for example, these people may have also found themselves increasingly cut off from trade routes as the season for thick sea ice extended. And by the mid-14th century, the Black Plague was tearing through Europe, cutting into the Vikings’ biggest market for walrus ivory.

    “Norse people came and left,” Zhao says. “But there are still a lot of unsolved questions,” including why exactly they left, he says.

    The last written record of this society is a letter describing a wedding in 1408. A few years later, that couple moved to Iceland and started farming. Why the pair chose to leave is lost to history, but, as the new research suggests, sea level rise may have been part of the equation.  More

  • in

    How a warming climate may make winter tornadoes stronger

    NEW ORLEANS — Warmer winters could make twisters more powerful.

    Though tornadoes can occur in any season, the United States logs the greatest number of powerful twisters in the warmer months from March to July. Devastating winter tornadoes like the one that killed at least 88 people across Kentucky and four other states beginning on December 10 are less common. 

    But climate change could increase tornado intensity in cooler months by many orders of magnitude beyond what was previously expected, researchers report December 13 in a poster at the American Geophysical Union’s fall meeting.

    Tornadoes typically form during thunderstorms when warm, humid airstreams get trapped beneath cooler, drier winds. As the fast-moving air currents move past each other, they create rotating vortices that can transform into vertical, spinning twisters (SN: 12/14/18). Many tornadoes are short-lived, sometimes lasting mere minutes and traveling only 100 yards, says Jeff Trapp, an atmospheric scientist at the University of Illinois at Urbana-Champaign.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Over the last 20 years, tornado patterns have shifted so that these severe weather events occur later in the season and across a broader range in the United States than before, Trapp says (SN: 10/18/18). But scientists have struggled to pin down a direct link between the twister changes and human-caused climate change.

    Unlike hurricanes and other severe storm systems, tornadoes happen at such a small scale that most global climate simulations don’t include the storms, says Kevin Reed, an atmospheric scientist at Stony Brook University in New York who was not involved in the study.

    To see how climate change may affect tornadoes, Trapp and colleagues started with atmospheric measurements of two historical tornadoes and simulated how those storm systems might play out in a warmer future.

    The first historical tornado took place in the cool season on February 10, 2013, near Hattiesburg, Miss., and the second occurred in the warm season on May 20, 2013, in Moore, Okla. The researchers used a global warming simulation to predict how the twisters’ wind speeds, width and intensity could change in a series of alternative climate scenarios.

    Both twisters would likely become more intense in futures affected by climate change, the team found. But the simulated winter storm was more than eightfold as powerful as its historical counterpart, in part due to a predicted 15 percent increase in wind speeds. Climate change is expected to increase the availability of warm, humid air systems during cooler months, providing an important ingredient for violent tempests.

    “This is exactly what we saw on Friday night,” Trapp says. The unseasonably warm weather in the Midwest on the evening of December 10 and in the early morning of December 11 probably contributed to the devastation of the tornado that traveled hundreds of miles from Arkansas to Kentucky, he speculates.

    Simulating how historical tornados could intensify in future climate scenarios is a “clever way” to address the knowledge gap around the effects of climate change on these severe weather systems, says Daniel Chavas, an atmospheric scientist at Purdue University in West Lafayette, Ind., who was not involved in the study.

    But Chavas notes that this research is only one piece of a larger puzzle as researchers investigate how tornados might impact communities in the future.

    One drawback of this type of simulation is it often requires direct measurements from a historical event, Reed says. That limits its prediction power to re-creating documented tornadoes rather than broadly forecasting shifts in large-scale weather systems.

    Though the team based its predictions on only two previous tornados, Trapp says he hopes that adding more historical twisters to the analysis could provide more data for policy makers as well as residents of communities that may have to bear the force of intensifying tornadoes. More

  • in

    Wildfire smoke may ramp up toxic ozone production in cities

    Wildfire smoke and urban air pollution bring out the worst in each other.

    As wildfires rage, they transform their burned fuel into a complex chemical cocktail of smoke. Many of these airborne compounds, including ozone, cause air quality to plummet as wind carries the smoldering haze over cities. But exactly how — and to what extent — wildfire emissions contribute to ozone levels downwind of the fires has been a matter of debate for years, says Joel Thornton, an atmospheric scientist at the University of Washington in Seattle.

    A new study has now revealed the elusive chemistry behind ozone production in wildfire plumes. The findings suggest that mixing wildfire smoke with nitrogen oxides — toxic gases found in car exhaust — could pump up ozone levels in urban areas, researchers report December 8 in Science Advances.

    Atmospheric ozone is a major component of smog that can trigger respiratory problems in humans and wildlife (SN: 1/4/21). Many ingredients for making ozone — such as volatile organic compounds and nitrogen oxides — can be found in wildfire smoke, says Lu Xu, an atmospheric chemist currently at the National Oceanographic and Atmospheric Administration Chemical Sciences Laboratory in Boulder, Colo. But a list of ingredients isn’t enough to replicate a wildfire’s ozone recipe. So Xu and colleagues took to the sky to observe the chemistry in action.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Through a joint project with NASA and NOAA, the researchers worked with the Fire Influence on Regional to Global Environments and Air Quality flight campaign to transform a jetliner into a flying laboratory. In July and August 2019, the flight team collected air samples from smoldering landscapes across the western United States. As the plane passed headlong through the plumes, instruments onboard recorded the kinds and amounts of each molecule detected in the haze. By weaving in and out of the smoke as it drifted downwind from the flames, the team also analyzed how the plume’s chemical composition changed over time.

    Using these measurements along with the wind patterns and fuel from each wildfire sampled, the researchers created a straightforward equation to calculate ozone production from wildfire emissions. “We took a complex question and gave it a simple answer,” says Xu, who did the work while at Caltech.

    As expected, the researchers found that wildfire emissions contain a dizzying array of organic compounds and nitrogen oxide species among other molecules that contribute to ozone formation. Yet their analysis showed that the concentration of nitrogen oxides decreases in the hours after the plume is swept downwind. Without this key ingredient, ozone production slows substantially.  

    Air pollution from cities and other urban areas is chock full of noxious gases. So when wildfire smoke wafts over cityscapes, a boost of nitrous oxides could jump-start ozone production again, Xu says.

    In a typical fire season, mixes like these could increase ozone levels by as much as 3 parts per billion in the western United States, the researchers estimate. This concentration is far below the U.S. Environmental Protection Agency’s health safety standard of 70 parts per billion, but the incremental increase could still pose a health risk to people who are regularly exposed to smoke, Xu says.

    With climate change increasing the frequency and intensity of wildfires, this new ozone production mechanism has important implications for urban air quality, says Qi Zhang, an atmospheric chemist at the University of California, Davis who was not involved in the study (SN: 9/18/20). She says the work provides an “important missing link” between wildfire emissions and ozone chemistry.

    The findings may also pose a challenge for environmental policy makers, says Thornton, who was not involved in the research. Though state and local authorities set strict regulations to limit atmospheric ozone, wildfire smoke may undermine those strategies, he says. This could make it more difficult for cities, especially in the western United States, to meet EPA ozone standards despite air quality regulations. More

  • in

    Invasive grasses are taking over the American West’s sea of sagebrush

    No one likes a cheater, especially one that prospers as easily as the grass Bromus tectorum does in the American West. This invasive species is called cheatgrass because it dries out earlier than native plants, shortchanging wildlife and livestock in search of nutritious food.

    Unfortunately for those animals and the crowded-out native plants, cheatgrass and several other invasive annual grasses now dominate one-fifth of the Great Basin, a wide swath of land that includes portions of Oregon, Nevada, Idaho, Utah and California. In 2020, these invasive grasses covered more than 77,000 square kilometers of Great Basin ecosystems, including higher elevation habitats that are now accessible to nonnative plants due to climate change, researchers report November 17 in Diversity and Distributions.

    This invasion of exotic annual grasses is degrading one of North America’s most imperiled biomes: a vast sea of sagebrush shrubs, wildflowers and bunchgrasses where pronghorn and mule deer roam and where ranchers rely on healthy rangelands to raise cattle.

    What’s more, these invasive grasses, which are highly flammable when dry, are also linked to more frequent and larger wildfires. In parts of Idaho’s Snake River Plain that are dominated by cheatgrass, for example, fires now occur every three to five years as opposed to the historical average of 60 to 110 years. From 2000 to 2009, 39 out of 50 of the largest fires in the Great Basin were associated with cheatgrass.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    To add insult to injury, cheatgrass is more efficient at recolonizing burned areas after a fire than native plants, creating a vicious loop: More cheatgrass causes more fires, and more fires foster more of the weeds. This means that land managers are often behind the curve, trying to keep cheatgrass from spreading to prevent wildfires, while also attempting to restore native plant communities after fires so that the sagebrush ecosystems don’t transition into a monoculture of invasive grasses.

    “We need to get strategic spatially to pinpoint where to protect intact native plant communities rather than constantly chasing the problem,” says Joseph Smith, a rangeland ecology researcher at the University of Montana in Missoula.

    To do that, Smith and his colleagues quantified how much of the Great Basin has transitioned to invasive annual grasses over the last three decades. The researchers used the Rangeland Analysis Platform, or RAP, a remote sensing product powered by Google Earth Engine that estimates the type and percentage of vegetation at a baseball diamond–sized scale.

    While the satellite imagery that RAP relies on can show where annual grasses turn brown in late spring in the West or where perennial plants stay green longer into the summer, the technology can’t delineate between native and nonnative plants. So researchers cross-checked RAP data with on-the-ground vegetation surveys collected through the U.S. Bureau of Land Management’s assessment, inventory and monitoring strategy.

    Invasive annual grasses have increased eightfold in area in the Great Basin region since 1990, the team found. Smith and colleagues estimate that areas dominated by the grasses have grown more than 2,300 square kilometers annually, a rate of take-over proportionally greater than recent deforestation of the Amazon rainforest.

    Perhaps most alarmingly, the team found that annual grasses, most of which are invasive, are steadily moving into higher elevations previously thought to be at minimal risk of invasion (SN: 10/3/14). Invasive annual grasses don’t tolerate cold, snowy winters as well as native perennial plants. But as a result of climate change, winters are trending more mild in the Great Basin and summers more arid. While perennial plants are struggling to survive the hot, dry months, invasive grass seeds simply lie dormant and wait for fall rains.

    “In a lot of ways, invasive grasses just do an end run around perennials. They don’t have to deal with the harshest effects of climate change because of their different life cycle,” Smith explains.

    Though the scale of the problem can seem overwhelming, free remote sensing technology like RAP may help land managers better target efforts to slow the spread of these invasive grasses and explore their connection to wildfires. Smith, for instance, is now researching how mapping annual grasses in the spring might help forecast summer wildfires.

    “If we don’t know where the problem is, then we don’t know where to focus solutions,” says Bethany Bradley, an invasion ecologist and biogeographer at the University of Massachusetts Amherst who wasn’t involved in the research. “Mapping invasive grasses can certainly help people stop the grass-fire cycle by knowing where to treat them with herbicides.” More

  • in

    The Southern Ocean is still swallowing large amounts of humans’ carbon dioxide emissions

    The Southern Ocean is still busily absorbing large amounts of the carbon dioxide emitted by humans’ fossil fuel burning, a study based on airborne observations of the gas suggests. The new results counter a 2018 report that had found that the ocean surrounding Antarctica might not be taking up as much of the emissions as previously thought, and in some regions may actually be adding CO₂ back to the atmosphere.    

    It’s not exactly a relief to say that the oceans, which are already becoming more acidic and storing record-breaking amounts of heat due to global warming, might be able to bear a little more of the climate change burden (SN: 4/28/17; SN: 1/13/21). But “in many ways, [the conclusion] was reassuring,” says Matthew Long, an oceanographer at the National Center for Atmospheric Research in Boulder, Colo.  

    That’s because the Southern Ocean alone has been thought to be responsible for nearly half of the global ocean uptake of humans’ CO₂ emissions each year. That means it plays an outsize role in modulating some of the immediate impacts of those emissions. However, the float-based estimates had suggested that, over the course of a year, the Southern Ocean was actually a net source of carbon dioxide rather than a sink, ultimately emitting about 0.3 billion metric tons of the gas back to the atmosphere each year.

    In contrast, the new findings, published in the Dec. 3 Science, suggest that from 2009 through 2018, the Southern Ocean was still a net sink, taking up a total of about 0.55 billion metric tons of carbon dioxide each year.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    The 2018 study had used newly deployed deep-diving ocean floats, now numbering almost 200, that are part of a project called Southern Ocean Carbon and Climate Observations and Modeling, or SOCCOM. Calculations based on data collected from 2014 through 2017 by 35 of the floats suggested that parts of the ocean were actually releasing a great deal of carbon dioxide back into the atmosphere during winter (SN: 6/2/19). That sparked concerns that the Southern Ocean’s role in buffering the impacts of climate change on Earth might not be so robust as once thought.

    Long says he and other researchers were somewhat skeptical about that takeaway, however. The floats measure temperature, salinity and pH in the water down to about 2,000 meters, and scientists use those data to calculate the carbon dioxide concentration in the water. But those calculations rest on several assumptions about the ocean water properties, as actual data are still very scarce. That may be skewing the data a bit, leading to calculations of higher carbon dioxide emitted from the water than is actually occurring, Long suggests.

    Another way to measure how much carbon dioxide is moving between air and sea is by taking airborne measurements. In the new study, the team amassed previously collected carbon dioxide data over large swaths of the Southern Ocean during three separate series of aircraft flights — one series lasting from 2009 to 2011, one in the winter of 2016 and a third in several periods from 2016 to 2018 (SN: 9/8/11). Then, the researchers used those data to create simulations of how much carbon dioxide could possibly be moving between ocean and atmosphere each year.

    The float-based and aircraft-based studies estimate different overall amounts of carbon dioxide moving out of the ocean, but both identified a seasonal pattern of less carbon dioxide absorbed by the ocean during winter. That indicates that both types of data are picking up a real trend, says Ken Johnson, an ocean chemist at the Monterey Bay Aquarium Research Institute in Moss Landing, Calif., who was not involved in the research. “We all go up and down together.”

    It’s not yet clear whether the SOCCOM data were off. But to better understand what sorts of biases might affect the pH calculations, researchers must compare direct measurements of carbon dioxide in the water taken from ships with pH-based estimates at the same location. Such studies are under way right now off the coast of California, Johnson says.

    The big takeaway, Johnson says, is that both datasets — as well as direct shipboard measurements in the Southern Ocean, which are few and far between — are going to be essential for understanding what role these waters play in the planet’s carbon cycle. While the airborne studies can help constrain the big picture of carbon dioxide emissions data from the Southern Ocean, the floats are much more widely distributed, and so are able to identify local and regional variability in carbon dioxide, which the atmospheric data can’t do.

    “The Southern Ocean is the flywheel of the climate system,” the part of an engine’s machinery that keeps things chugging smoothly along, Johnson says. “If we don’t get our understanding of the Southern Ocean right, we don’t have much hope for understanding the rest of the world.” More

  • in

    Fungi may be crucial to storing carbon in soil as the Earth warms

    When it comes to storing carbon in the ground, fungi may be key.

    Soils are a massive reservoir of carbon, holding about three times as much carbon as Earth’s atmosphere. The secret behind this carbon storage are microbes, such as bacteria and some fungi, which transform dead and decaying matter into carbon-rich soil.

    But not all carbon compounds made by soil microbes are equal. Some can last for decades or even centuries in the soil, while others are quickly consumed by microbes and converted into carbon dioxide that’s lost to the atmosphere. Now, a study shows that fungi-rich soils grown in laboratory experiments released less carbon dioxide when heated than other soils.

    The result suggests that fungi are essential for making soil that sequesters carbon in the earth, microecologist Luiz Domeignoz-Horta and colleagues report November 6 in ISME Communications.

    Who is making soil matters, Domeignoz-Horta says.

    The study comes as some scientists warn that climate change threatens to release more carbon out of the ground and into the atmosphere, further worsening global warming. Researchers have found that rising temperatures can lead to population booms in soil microbes, which quickly exhaust easily digestible carbon compounds. This forces the organisms to turn to older, more resilient carbon stores, converting carbon stored away long ago into carbon dioxide.

    With the combined threat of rising temperatures and damage to soil microbe communities from intensive farming and disappearing forests, some computer models indicate that 40 percent less carbon will stick in the soil by 2100 than previous simulations have anticipated (SN: 9/22/16).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    To see if scientists can coax soils to store more carbon, researchers need to understand what makes soil microbes tick. But that is no simple task. “Some say soil is the most complex matrix on the planet,” says Kirsten Hofmockel, an ecologist at the Pacific Northwest National Laboratory in Richland, Wash., who was not involved in the research.

    To simplify matters, Domeignoz-Horta, of the University of Zurich, and colleagues grew their own dirt in the lab. The researchers separated fungi and bacteria from forest soil and grew five combinations of these communities in petri dishes, including some that were home only to bacteria or fungi. The researchers sustained the microbes on a diet of simple sugar and left them to churn out soil for four months. The team then heated the different soils to see how much carbon dioxide was produced.

    Bacteria were the main drivers behind making soil, but fungi-rich soils produced less carbon dioxide when heated than soils made solely by bacteria, the researchers found. Why is still unclear. One possibility is that fungi could be producing enzymes — proteins that build or break up other molecules — that bacteria aren’t capable of making on their own, Domeignoz-Horta says. These fungi-derived compounds may provide bacteria with different building blocks with which to build soil, which may end up creating carbon compounds with a longer shelf life in soils.

    What happens in lab-grown soil may not play out the same in the real world. But the new research is an important step in understanding how carbon is locked away long-term, Hofmockel says. This kind of information could one day help researchers develop techniques to ensure that more carbon stays in the ground for longer, which could help mitigate the amount of carbon dioxide in the atmosphere.

    “If we can get carbon in the ground for five years, that’s a step in the right direction,” Hofmockel says. “But if we can have stable carbon in the soil for centuries or even millennia, that’s a solution.” More

  • in

    A new book shows how animals are already coping with climate change

    Hurricane Lizards and Plastic SquidThor HansonBasic Books, $28

    As a conservation biologist, Thor Hanson has seen firsthand the effects of climate change on plants and animals in the wild: the green macaws of Central America migrating along with their food sources, the brown bears of Alaska fattening up on early-ripening berry crops, the conifers of New England seeking refuge from vanishing habitats. And as an engaging author who has celebrated the wonders of nature in books about feathers, seeds, forests and bees (SN: 7/21/18, p. 28), he’s an ideal guide to a topic that might otherwise send readers down a well of despair.

    Hanson does not despair in his latest book, Hurricane Lizards and Plastic Squid. Though he outlines the many ways that global warming is changing life on our planet, his tone is not one of hand-wringing. Instead, Hanson invites the reader into the stories of particular people, places and creatures of all sorts. He draws these tales from his own experiences and those of other scientists, combining reporting with narrative tales of species that serve as examples of broader trends in the natural world.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    A trip to La Selva Biological Station in Costa Rica, for example, has Hanson reliving the experience of tropical ecologist and climatologist Leslie Holdridge, who founded the research station in the 1950s and described, among other things, how climate creates different habitats, or life zones, as elevation increases. As Hanson sweats his way up a tropical mountainside so he can witness a shift in life zones, he notes, “I had to earn every foot of elevation gain the hard way.” I could almost feel the heat that he describes as “a steaming towel draped over my head.” His vivid descriptions bring home the reason why so many species have now been documented moving upslope to cooler climes.

    Hanson doesn’t waste much breath trying to convince doubters of the reality of climate change, instead showing by example after example how it is already playing out. The book moves quickly from the basic science of climate change to the challenges and opportunities that species face — from shifts in seasonal timing to ocean acidification — and the ways that species are responding.

    As Hanson notes, the acronym MAD, for “move, adapt or die,” is often used to describe species’ options for responding. But that pithy phrase doesn’t capture the complexity of the situation. For instance, one of his titular characters, a lizard slammed by back-to-back Caribbean hurricanes in 2017, illustrates a different response. Instead of individual lizards adjusting, or adapting, to increasingly stormy conditions, the species evolved through natural selection. Biologists monitoring the lizards on two islands noticed that after the hurricanes, the lizard populations had longer front legs, shorter back legs and grippier toe pads on average than they had before. An experiment with a leaf blower showed that these traits help the lizards cling to branches better — survival of the fittest in action.

    In the end, the outcomes for species will probably be as varied as their circumstances. Some organisms have already moved, adapted or died as a result of the warming, and many more will face challenges from changes that are yet to come. But Hanson hasn’t given up hope. When it comes to preventing the worst-case scenarios, he quotes ecologist Gordon Orians, who is in the seventh decade of a career witnessing environmental change. When asked what a concerned citizen should do to combat climate change, he responded succinctly: “Everything you can.” And as Hanson points out, this is exactly how plants and animals are responding to climate change: by doing everything they can. The challenge feels overwhelming, and as a single concerned citizen, much feels out of my hands. Yet Hanson’s words did inspire me to take a cue from the rest of the species on this warming world to do what I can.

    Buy Hurricane Lizards and Plastic Squid from Bookshop.org. Science News is a Bookshop.org affiliate and will earn a commission on purchases made from links in this article. More

  • in

    Corals may store a surprising amount of microplastics in their skeletons

    A surprising amount of plastic pollution in the ocean may wind up in a previously overlooked spot: the skeletons of living corals. 

    Up to about 20,000 metric tons of tiny fragments called microplastics may be stored in coral skeletons worldwide every year, says ecologist Jessica Reichert of Justus Liebig University Giessen in Germany. That corresponds to nearly 3 percent of the microplastics estimated to be in the shallow, tropical waters where corals thrive.

    Corals have been observed eating or otherwise incorporating microplastics into their bodies (SNS: 3/18/15). But scientists don’t know how much of the debris reefs take up globally. So Reichert and colleagues exposed corals in the lab to microplastics to find out where the particles are stored inside corals and estimate how much is tucked away.

    Corals consumed some of the trash, or grew their skeletons over particles. After 18 months, most of the debris inside corals was in their skeletons rather than tissues, the researchers report October 28 in Global Change Biology. After counting the number of trapped particles, the researchers estimate that between nearly 6 billion and 7 quadrillion microplastic particles may be permanently stored in corals worldwide annually.

    Tiny plastic particles (black spots in this image of coral that has had its tissue removed) end up trapped in coral skeletons when corals grow over the fragments or ingest them.J. Reichert

    It’s the first time that a living microplastic “sink,” or long-term storage site, has been quantified, Reichert says.

    Scientists are learning how much microplastic is being introduced to the oceans. But researchers don’t know where it all ends up (SN: 6/6/19). Other known microplastic sinks, such as sea ice and seafloor sediments, need better quantification, and other sinks may not yet be known.

    Reefs are typically found near coasts where polluted waterways can drain to the sea, placing corals in potential microplastic hot spots.

    “We don’t know what consequences this [storage] might have for the coral organisms, [or for] reef stability and integrity,” Reichert says. It “might pose an additional threat to coral reefs worldwide.”  

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up. More