HOTTEST

On some Martian nights, a subtle, green glow hangs low in the sky, wreathing the horizon in every direction.
A visible Martian aurora has finally been observed for the first time, researchers report May 14 in Science Advances. The observation, made March 18, 2024, by the Perseverance rover, is also the first of an aurora from the surface of a planet that isn’t Earth. Moreover, it suggests future astronauts may witness ethereal Martian auroras with their own eyes. “It would be a dull or dim green glow to astronauts’ eyes,” says Roger Wiens, a planetary scientist at Purdue University in Lafayette, Ind.
Auroras can appear when charged particles from space interact with a planet’s atmosphere. They’ve already been spotted on Mercury, Jupiter and every other non-Earth planet in our solar system, but only from orbit. And in Mars’ sky, scientists had only been able to detect auroral wavelengths of light invisible to the naked eye, using instruments. So it wasn’t clear how Martian auroras would appear to future, landed astronauts.
On March 18, 2024, instruments aboard the Perseverance rover captured an image of a Martian aurora. Though relatively faint, the aurora’s green hues (left) can be made out by comparing the image with one of the typical inky Martian night (right). Due to the phenomenon’s subtle nature, the rover’s instruments were pointed at a low angle over the horizon to peer through a thick layer of the atmosphere. E.W. Knutsen et al/Science Advances 2025
Compared to many Earthly aurora photos, the new image from Mars is fuzzy. There are a couple reasons for that. First, Perseverance’s cameras perform less well at night, Wiens says. “The instruments aren’t tremendously more sensitive than human eyes,” he says.
And second, Mars doesn’t have a global magnetic field that concentrates auroras near its poles like Earth does. Instead, its crust is magnetized in patches. That means auroras can appear all over the planet, but they’re relatively dim. More

The best way to know a world is to touch it. Scientists have observed the planets and moons in our solar system for centuries, and have flown spacecraft past the orbs for decades. But to really understand these worlds, researchers need to get their hands dirty — or at least a spacecraft’s landing pads.
Since the dawn of the space age, Mars and the moon have gotten almost all the lander love. Only a handful of spacecraft have landed on Venus, our other nearest neighbor world, and none have touched down on Europa, an icy moon of Jupiter thought to be one of the best places in the solar system to look for present-day life (SN: 5/2/14).
Researchers are working to change that. In several talks at the virtual American Geophysical Union meeting that ran from December 1 to December 17, planetary scientists and engineers discussed new tricks that hypothetical future spacecraft may need to land on unfamiliar terrain on Venus and Europa. The missions are still in a design phase and are not on NASA’s launch schedule, but scientists want to be prepared.Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Navigating a Venusian gauntlet
Venus is a notoriously difficult world to visit (SN: 2/13/18). Its searing temperatures and crushing atmospheric pressure have destroyed every spacecraft lucky enough to reach the surface within about two hours of arrival. The last landing was over 30 years ago, despite increasing confidence among planetary scientists that Venus’ surface was once habitable (SN: 8/26/16). That possibility of past, and perhaps current, life on Venus is one reason scientists are anxious to get back (SN: 10/28/20).
In one of the proposed plans discussed at the AGU meeting, scientists have ridged, folded mountainous terrain on Venus called tessera in their sights. “Safely landing in tessera terrain is absolutely necessary to satisfy our science objectives,” said planetary scientist Joshua Knicely of the University of Alaska Fairbanks in a talk recorded for the meeting. “We have to do it.”
Knicely is part of a study led by geologist Martha Gilmore of Wesleyan University in Middletown, Conn., to design a hypothetical mission to Venus that could launch in the 2030s. The mission would include three orbiters, an aerobot to float in the clouds and a lander that could drill and analyze samples of tessera rocks. This terrain is thought to have formed where edges of continents slid over and under each other long ago, bringing new rock up to the surface in what might have been some version of plate tectonics. On Earth, this sort of resurfacing may have been important in making the planet hospitable to life (SN: 4/22/20).
Ridged, folded mountainous terrain on Venus called tessera (bright region in this false-color image from NASA’s Magellan spacecraft) might have formed through long-ago tectonic activity.JPL-Caltech/NASA
But landing in these areas on Venus could be especially difficult. Unfortunately, the best maps of the planet — from NASA’s Magellan orbiter in the 1990s — can’t tell engineers how steep the slopes are in tessera terrain. Those maps suggest that most are less than 30 degrees, which the lander could handle with four telescoping legs. But some could be up to 60 degrees, leaving the spacecraft vulnerable to toppling over.
“We have a very poor understanding of what the surface is like,” Gilmore said in a talk recorded for the meeting. “What’s the boulder size? What’s the rock size distribution? Is it fluffy?”
So the lander will need some kind of intelligent navigation system to pick out the best places to land and steer there. But that need for steering brings up another problem: Unlike landers on Mars, a Venus lander can’t use small rocket engines to slow down as it descends.
The shape of a rocket is tailored to the density of air that it will push against. That’s why rockets that launch spacecraft from Earth have two sections: one for Earth’s atmosphere and one for the near-vacuum of space. Venus’ atmosphere changes density and pressure so quickly between space and the planet’s surface that “dropping a kilometer would go from the rocket working perfectly, to it’s going to misfire and possibly blow itself apart,” Knicely says.
Instead of rockets, the proposed lander would use fans to push itself around, almost like a submarine, turning the disadvantage of the dense atmosphere into an advantage.
The planet’s atmosphere also presents the biggest challenge of all: seeing the ground. Venus’ dense atmosphere scatters light more than Earth’s or Mars’ does, blurring the view of the surface until the last few kilometers of descent.
Worse, the scattered light makes it seem like illumination is coming from all directions at once, like shining a flashlight into fog. There are no shadows to help show steep slopes or reveal big boulders that the lander could crash into. That’s a major issue, according to Knicely, because all of the existing navigation software assumes that light comes from just one direction.
“If we can’t see the ground, we can’t find out where the safe stuff is,” Knicely says. “And we also can’t find out where the science is.” While proposed solutions to the other challenges of landing on Venus are close to doable, he says, this one remains the biggest hurdle.
Sticking the landing on Europa
Jupiter’s icy moon Europa, on the other hand, has no air to blur the surface or break rockets. A hypothetical future Europa lander, also discussed at the AGU meeting, would be able to use the “sky crane” technique (SN: 8/6/12). That method, in which a platform hovers above the surface using rockets and drops a spacecraft to the ground, was used to land the Curiosity rover on Mars in 2012 and will be used for the Perseverance lander in February 2021.
“The engineers are very excited about not having to deal with an atmosphere on the way down,” said spacecraft engineer Jo Pitesky of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in a recorded talk for the meeting.
Still, there’s a lot that scientists don’t know about Europa’s surface, which could have implications for any lander that touches down, said planetary scientist Marissa Cameron of the Jet Propulsion Laboratory in another talk.
The best views of the moon’s landscape are from the Galileo orbiter in the 1990s, and the smallest features it could see were half a kilometer across. Some scientists have suggested that Europa could sport jagged ice spikes called penitentes, similar to ice features in the Chilean Andes Mountains that are named for their resemblance to hooded monks with bowed heads — although more recent work shows Europa’s lack of atmosphere should keep penitentes from forming.
Another mission, the Europa Clipper, that’s already underway will take higher-resolution images when the orbiter visits the Jovian moon later this decade, which should help clarify the issue.
In the meantime, scientists and engineers are running elaborate dress rehearsals for a Europa landing, from simulating ices with different chemical compositions in vacuum chambers to dropping a dummy lander named Olaf from a crane to see how it holds up.
“We have a requirement that says the terrain can have any configuration — jagged, potholes, you name it — and we have to be able to conform to that surface and be stable at it,” says John Gallon, an engineer at the Jet Propulsion Laboratory. (The dummy lander was named for his 4-year-old daughter’s favorite character in the movie Frozen.)
[embedded content]
Olaf, a scale model of a possible Europa lander, is helping NASA engineers test different strategies for landing on the icy moon of Jupiter. The rover is named for the snowman in the movie Frozen.
Over the last two years, Gallon and colleagues have tested different lander feet, legs and configurations in a lab by suspending the lander from the ceiling like a marionette. That suspension helps simulate Europa’s gravity, which is one-seventh that of Earth’s.
Without much gravity, a massive lander could easily bounce around and damage itself when trying to land. “You’re not going to stick the landing like a gymnast coming off the bars,” Gallon says. His team has tried sticky feet, bowl-shaped feet, springs that compress and push into the surface and legs that lock to help the lander stay put on various terrains. The lander might crouch like a frog or stand stiff like a table, depending on what type of surface it lands on.
Although Olaf is hard at work helping scientists figure out what it will take to build a successful Europa lander, the mission itself, like its Venusian counterpart, remains only on some planetary scientists’ wish lists for now. Meanwhile, other researchers dream about voyages to entirely different worlds, including Saturn’s geyser moon Enceladus.
“Some people will pick favorites,” Cameron says. “I just want to land someplace we’ve never been to that’s not Mars. I’d love that.” More
On Jupiter, lightning jerks and jolts a lot like it does on Earth.
Jovian lightning emits radio wave pulses that are typically separated by about one millisecond, researchers report May 23 in Nature Communications. The energetic prestissimo, the scientists say, is a sign that the gas giant’s lightning propagates in pulses, at a pace comparable to that of the bolts that cavort through our own planet’s thunderclouds. The similarities between the two world’s electrical phenomena could have implications for the search for alien life.
.email-conversion {
border: 1px solid #ffcccb;
color: white;
margin-top: 50px;
background-image: url(“/wp-content/themes/sciencenews/client/src/images/cta-module@2x.jpg”);
padding: 20px;
clear: both;
}.zephr-registration-form{max-width:440px;margin:20px auto;padding:20px;background-color:#fff;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form *{box-sizing:border-box}.zephr-registration-form-text > *{color:var(–zephr-color-text-main)}.zephr-registration-form-relative-container{position:relative}.zephr-registration-form-flex-container{display:flex}.zephr-registration-form-input.svelte-blfh8x{display:block;width:100%;height:calc(var(–zephr-input-height) * 1px);padding-left:8px;font-size:16px;border:calc(var(–zephr-input-borderWidth) * 1px) solid var(–zephr-input-borderColor);border-radius:calc(var(–zephr-input-borderRadius) * 1px);transition:border-color 0.25s ease, box-shadow 0.25s ease;outline:0;color:var(–zephr-color-text-main);background-color:#fff;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-input.svelte-blfh8x::placeholder{color:var(–zephr-color-background-tinted)}.zephr-registration-form-input-checkbox.svelte-blfh8x{width:auto;height:auto;margin:8px 5px 0 0;float:left}.zephr-registration-form-input-radio.svelte-blfh8x{position:absolute;opacity:0;cursor:pointer;height:0;width:0}.zephr-registration-form-input-color[type=”color”].svelte-blfh8x{width:50px;padding:0;border-radius:50%}.zephr-registration-form-input-color[type=”color”].svelte-blfh8x::-webkit-color-swatch{border:none;border-radius:50%;padding:0}.zephr-registration-form-input-color[type=”color”].svelte-blfh8x::-webkit-color-swatch-wrapper{border:none;border-radius:50%;padding:0}.zephr-registration-form-input.disabled.svelte-blfh8x,.zephr-registration-form-input.disabled.svelte-blfh8x:hover{border:calc(var(–zephr-input-borderWidth) * 1px) solid var(–zephr-input-borderColor);background-color:var(–zephr-color-background-tinted)}.zephr-registration-form-input.error.svelte-blfh8x{border:1px solid var(–zephr-color-warning-main)}.zephr-registration-form-input-label.svelte-1ok5fdj.svelte-1ok5fdj{margin-top:10px;display:block;line-height:30px;font-size:12px;color:var(–zephr-color-text-tinted);font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-input-label.svelte-1ok5fdj span.svelte-1ok5fdj{display:block}.zephr-registration-form-button.svelte-17g75t9{height:calc(var(–zephr-button-height) * 1px);line-height:0;padding:0 20px;text-decoration:none;text-transform:capitalize;text-align:center;border-radius:calc(var(–zephr-button-borderRadius) * 1px);font-size:calc(var(–zephr-button-fontSize) * 1px);font-weight:normal;cursor:pointer;border-style:solid;border-width:calc(var(–zephr-button-borderWidth) * 1px);border-color:var(–zephr-color-action-tinted);transition:backdrop-filter 0.2s, background-color 0.2s;margin-top:20px;display:block;width:100%;background-color:var(–zephr-color-action-main);color:#fff;position:relative;overflow:hidden;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-button.svelte-17g75t9:hover{background-color:var(–zephr-color-action-tinted);border-color:var(–zephr-color-action-tinted)}.zephr-registration-form-button.svelte-17g75t9:disabled{background-color:var(–zephr-color-background-tinted);border-color:var(–zephr-color-background-tinted)}.zephr-registration-form-button.svelte-17g75t9:disabled:hover{background-color:var(–zephr-color-background-tinted);border-color:var(–zephr-color-background-tinted)}.zephr-registration-form-text.svelte-i1fi5{font-size:19px;text-align:center;margin:20px auto;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-input-inner-text.svelte-lvlpcn{cursor:pointer;position:absolute;top:50%;transform:translateY(-50%);right:10px;color:var(–zephr-color-text-main);font-size:12px;font-weight:bold;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-divider-container.svelte-mk4m8o{display:flex;align-items:center;justify-content:center;margin:40px 0}.zephr-registration-form-divider-line.svelte-mk4m8o{height:1px;width:50%;margin:0 5px;background-color:var(–zephr-color-text-tinted);;}.zephr-registration-form-divider-text.svelte-mk4m8o{margin:0 12px;color:var(–zephr-color-text-main);font-size:14px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);white-space:nowrap}.zephr-registration-form-response-message.svelte-179421u{text-align:center;padding:10px 30px;border-radius:5px;font-size:15px;margin-top:10px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-response-message-title.svelte-179421u{font-weight:bold;margin-bottom:10px}.zephr-registration-form-response-message-success.svelte-179421u{background-color:#baecbb;border:1px solid #00bc05}.zephr-registration-form-response-message-error.svelte-179421u{background-color:#fcdbec;border:1px solid #d90c00}.zephr-recaptcha-tcs.svelte-1wyy3bx{margin:20px 0 0 0;font-size:15px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-recaptcha-inline.svelte-1wyy3bx{margin:20px 0 0 0}.zephr-registration-form-social-sign-in.svelte-gp4ky7{align-items:center}.zephr-registration-form-social-sign-in-button.svelte-gp4ky7{height:55px;padding:0 15px;color:#000;background-color:#fff;box-shadow:0px 0px 5px rgba(0, 0, 0, 0.3);border-radius:10px;font-size:17px;display:flex;align-items:center;cursor:pointer;margin-top:20px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-social-sign-in-button.svelte-gp4ky7:hover{background-color:#fafafa}.zephr-registration-form-social-sign-in-icon.svelte-gp4ky7{display:flex;justify-content:center;margin-right:30px;width:25px}.zephr-form-link-message.svelte-rt4jae{margin:10px 0 10px 20px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-progress-bar.svelte-8qyhcl{width:100%;border:0;border-radius:20px;margin-top:10px}.zephr-registration-form-progress-bar.svelte-8qyhcl::-webkit-progress-bar{background-color:var(–zephr-color-background-tinted);border:0;border-radius:20px}.zephr-registration-form-progress-bar.svelte-8qyhcl::-webkit-progress-value{background-color:var(–zephr-color-text-tinted);border:0;border-radius:20px}.zephr-registration-progress-bar-step.svelte-8qyhcl{margin:auto;color:var(–zephr-color-text-tinted);font-size:12px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-progress-bar-step.svelte-8qyhcl:first-child{margin-left:0}.zephr-registration-progress-bar-step.svelte-8qyhcl:last-child{margin-right:0}.zephr-registration-form-input-inner-text.svelte-lvlpcn{cursor:pointer;position:absolute;top:50%;transform:translateY(-50%);right:10px;color:var(–zephr-color-text-main);font-size:12px;font-weight:bold;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-input-error-text.svelte-19a73pq{color:var(–zephr-color-warning-main);font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-input-select.svelte-19a73pq{display:block;appearance:auto;width:100%;height:calc(var(–zephr-input-height) * 1px);font-size:16px;border:calc(var(–zephr-input-borderWidth) * 1px) solid var(–zephr-color-text-main);border-radius:calc(var(–zephr-input-borderRadius) * 1px);transition:border-color 0.25s ease, box-shadow 0.25s ease;outline:0;color:var(–zephr-color-text-main);background-color:#fff;padding:10px}.zephr-registration-form-input-select.disabled.svelte-19a73pq{border:1px solid var(–zephr-color-background-tinted)}.zephr-registration-form-input-select.unselected.svelte-19a73pq{color:var(–zephr-color-background-tinted)}.zephr-registration-form-input-select.error.svelte-19a73pq{border-color:var(–zephr-color-warning-main)}.zephr-registration-form-input-textarea.svelte-19a73pq{background-color:#fff;border:1px solid #ddd;color:#222;font-size:14px;font-weight:300;padding:16px;width:100%}.zephr-registration-form-input-slider-output.svelte-19a73pq{margin:13px 0 0 10px}.spin.svelte-1cj2gr0{animation:svelte-1cj2gr0-spin 2s 0s infinite linear}.pulse.svelte-1cj2gr0{animation:svelte-1cj2gr0-spin 1s infinite steps(8)}@keyframes svelte-1cj2gr0-spin{0%{transform:rotate(0deg)}100%{transform:rotate(360deg)}}.zephr-registration-form-input-radio.svelte-1qn5n0t{position:absolute;opacity:0;cursor:pointer;height:0;width:0}.zephr-registration-form-radio-label.svelte-1qn5n0t{display:flex;align-items:center;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-radio-dot.svelte-1qn5n0t{position:relative;box-sizing:border-box;height:23px;width:23px;background-color:#fff;border:1px solid #ebebeb;border-radius:50%;margin-right:12px}.checked.svelte-1qn5n0t{border-color:#009fe3}.checked.svelte-1qn5n0t:after{content:””;position:absolute;width:17px;height:17px;background:#009fe3;background:linear-gradient(#009fe3, #006cb5);border-radius:50%;top:2px;left:2px}.disabled.checked.svelte-1qn5n0t:after{background:var(–zephr-color-background-tinted)}.error.svelte-1qn5n0t{border:1px solid var(–zephr-color-warning-main)}.zephr-registration-form-checkbox.svelte-1gzpw2y{position:absolute;opacity:0;cursor:pointer;height:0;width:0}.zephr-registration-form-checkbox-label.svelte-1gzpw2y{display:flex;align-items:center;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-checkmark.svelte-1gzpw2y{position:relative;box-sizing:border-box;height:23px;width:23px;background-color:#fff;border:1px solid var(–zephr-color-text-main);border-radius:6px;margin-right:12px;cursor:pointer}.zephr-registration-form-checkmark.checked.svelte-1gzpw2y{border-color:#009fe3}.zephr-registration-form-checkmark.checked.svelte-1gzpw2y:after{content:””;position:absolute;width:6px;height:13px;border:solid #009fe3;border-width:0 2px 2px 0;transform:rotate(45deg);top:3px;left:8px;box-sizing:border-box}.zephr-registration-form-checkmark.disabled.svelte-1gzpw2y{border:1px solid var(–zephr-color-background-tinted)}.zephr-registration-form-checkmark.disabled.checked.svelte-1gzpw2y:after{border:solid var(–zephr-color-background-tinted);border-width:0 2px 2px 0}.zephr-registration-form-checkmark.error.svelte-1gzpw2y{border:1px solid var(–zephr-color-warning-main)}.zephr-registration-form-google-icon.svelte-1jnblvg{width:20px}.zephr-form-link.svelte-64wplc{margin:10px 0;color:#6ba5e9;text-decoration:underline;cursor:pointer;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-form-link-disabled.svelte-64wplc{color:var(–zephr-color-text-main);cursor:none;text-decoration:none}.zephr-registration-form-password-progress.svelte-d1zv9r{display:flex;margin-top:10px}.zephr-registration-form-password-bar.svelte-d1zv9r{width:100%;height:4px;border-radius:2px}.zephr-registration-form-password-bar.svelte-d1zv9r:not(:first-child){margin-left:8px}.zephr-registration-form-password-requirements.svelte-d1zv9r{margin:20px 0;justify-content:center}.zephr-registration-form-password-requirement.svelte-d1zv9r{display:flex;align-items:center;color:var(–zephr-color-text-tinted);font-size:12px;height:20px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-password-requirement-icon.svelte-d1zv9r{margin-right:10px;font-size:15px}.zephr-registration-form-password-progress.svelte-d1zv9r{display:flex;margin-top:10px}.zephr-registration-form-password-bar.svelte-d1zv9r{width:100%;height:4px;border-radius:2px}.zephr-registration-form-password-bar.svelte-d1zv9r:not(:first-child){margin-left:8px}.zephr-registration-form-password-requirements.svelte-d1zv9r{margin:20px 0;justify-content:center}.zephr-registration-form-password-requirement.svelte-d1zv9r{display:flex;align-items:center;color:var(–zephr-color-text-tinted);font-size:12px;height:20px;font-family:var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont)}.zephr-registration-form-password-requirement-icon.svelte-d1zv9r{margin-right:10px;font-size:15px}
.zephr-registration-form {
max-width: 100%;
background-image: url(/wp-content/themes/sciencenews/client/src/images/cta-module@2x.jpg);
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
margin: 0px auto;
margin-bottom: 4rem;
padding: 20px;
}.zephr-registration-form-text h6 {
font-size: 0.8rem;
}.zephr-registration-form h4 {
font-size: 3rem;
}.zephr-registration-form h4 {
font-size: 1.5rem;
}.zephr-registration-form-button.svelte-17g75t9:hover {
background-color: #fc6a65;
border-color: #fc6a65;
width: 150px;
margin-left: auto;
margin-right: auto;
}
.zephr-registration-form-button.svelte-17g75t9:disabled {
background-color: #e04821;
border-color: #e04821;
width: 150px;
margin-left: auto;
margin-right: auto;
}
.zephr-registration-form-button.svelte-17g75t9 {
background-color: #e04821;
border-color: #e04821;
width: 150px;
margin-left: auto;
margin-right: auto;
}
.zephr-registration-form-text > * {
color: #FFFFFF;
font-weight: bold
font: 25px;
}
.zephr-registration-form-progress-bar.svelte-8qyhcl {
width: 100%;
border: 0;
border-radius: 20px;
margin-top: 10px;
display: none;
}
.zephr-registration-form-response-message-title.svelte-179421u {
font-weight: bold;
margin-bottom: 10px;
display: none;
}
.zephr-registration-form-response-message-success.svelte-179421u {
background-color: #8db869;
border: 1px solid #8db869;
color: white;
margin-top: -0.2rem;
}
.zephr-registration-form-text.svelte-i1fi5:nth-child(1){
font-size: 18px;
text-align: center;
margin: 20px auto;
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
color: white;
}
.zephr-registration-form-text.svelte-i1fi5:nth-child(5){
font-size: 18px;
text-align: left;
margin: 20px auto;
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
color: white;
}
.zephr-registration-form-text.svelte-i1fi5:nth-child(7){
font-size: 18px;
text-align: left;
margin: 20px auto;
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
color: white;
}
.zephr-registration-form-text.svelte-i1fi5:nth-child(9){
font-size: 18px;
text-align: left;
margin: 20px auto;
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
color: white;
}
.zephr-registration-form-input-label.svelte-1ok5fdj span.svelte-1ok5fdj {
display: none;
color: white;
}
.zephr-registration-form-input.disabled.svelte-blfh8x, .zephr-registration-form-input.disabled.svelte-blfh8x:hover {
border: calc(var(–zephr-input-borderWidth) * 1px) solid var(–zephr-input-borderColor);
background-color: white;
}
.zephr-registration-form-checkbox-label.svelte-1gzpw2y {
display: flex;
align-items: center;
font-family: var(–zephr-typography-body-font), var(–zephr-typography-body-fallbackFont);
color: white;
font-size: 20px;
margin-bottom: -20px;
}Arcs of lightning on both worlds appear to move somewhat like a winded hiker going up a mountain, pausing after each step to catch their breath, says Ivana Kolmašová, an atmospheric physicist at the Czech Academy of Sciences in Prague. “One step, another step, then another step … and so on.”
Here on Earth, lightning forms as turbulent winds within thunderclouds cause many ice crystals and water droplets to rub together, become charged and then move to opposite sides of the clouds, progressively generating static electrical charges. When the charges grow big enough to overcome the air’s ability to insulate them, electrons are released — the lightning takes its first step. From there, the surging electrons will repeatedly ionize the air and rush into it, lurching the bolt forward at an average of hundreds of thousands of meters per second.
Scientists have suggested that superbolts observed in Jovian clouds might also form by collisions between ice crystals and water droplets (SN: 8/5/20). But no one knew whether the alien bolts extended and branched in increments, as they do on Earth, or if they took some other form.
For the new study, Kolmašová and her colleagues used five years of radio wave data collected by NASA’s Juno spacecraft (SN: 12/15/22). Analyzing hundreds of thousands of radio wave snapshots, the team found radio wave emissions from Jovian lightning appeared to pulse at a rate comparable to that of Earth’s intracloud lightning — arcs of electricity that never strike ground.
If bolts extend through Jupiter’s water clouds at a similar velocity as they do in Earth’s clouds, then Jovian lightning might branch and extend in steps that are hundreds to thousands of meters long. That’s comparable in length to the jolted strides of Earth’s intracloud lightning, the researchers say.
“That’s a perfectly reasonable explanation,” says atmospheric physicist Richard Sonnenfeld of the New Mexico Institute of Mining and Technology in Socorro, who wasn’t involved in the study. Alternatively, he says, the signals could be produced as pulses of electrical current propagate back and forth along tendrils of lightning that have already formed, rather than from the stop-and-go advancements of a new bolt. On Earth, such currents cause some bolts to appear to flicker.
But stop and go seems like a sound interpretation, says atmospheric physicist Yoav Yair of Reichman University in Herzliya, Israel. Kolmašová and her colleagues “show that if you’re discharging a cloud … the physics remains basically the same [on Jupiter as on Earth], and the current will behave the same.”
If that universality is real, it could have implications for the search for life elsewhere. Experiments have shown that lightning strikes on Earth could have smelted some of the chemical ingredients needed to form the building blocks of life (SN: 3/16/21). If lightning is discharging in a similar way on alien worlds, Yair says, then it could be producing similar ingredients in those places too. More

“Follow the water” has long been the mantra of scientists searching for life beyond Earth. After all, the only known cradle of life in the cosmos is the watery planet we call home. But now there’s more evidence suggesting that a potential discovery of liquid water on Mars might not be so watertight, researchers report September 26 in Nature Astronomy.
In 2018, scientists announced the discovery of a large subsurface lake near Mars’ south pole (SN: 7/25/18). That claim — and follow-up observations suggesting additional buried pools of liquid water on the Red Planet (SN: 9/28/20) — fueled excitement about finally finding an extraterrestrial world possibly conducive to life.
Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up.
But researchers have since proposed that those discoveries might not hold up to scrutiny. In 2021, one group suggested that clay minerals and frozen brines, rather than liquid water, might be responsible for the strong radar signals that researchers observed (SN: 7/16/21). Spacecraft orbiting Mars beam radio waves toward the Red Planet and measure the timing and intensity of the reflected waves to infer what’s beneath the Martian surface.
And now another team has shown that ordinary layers of rock and ice can produce many of the same radar signals previously attributed to water. Planetary scientist Dan Lalich of Cornell University and his colleagues calculated how flat layers of bedrock, water ice and carbon dioxide ice — all known to be plentiful on Mars — reflect radio waves. “It was a pretty simple analysis,” Lalich says.
The researchers found that they could reproduce some of the anomalously strong radar signals thought to be due to liquid water. Individual radar signals from different layers of rock and ice add together when the layers are a certain thickness, Lalich says. That produces a stronger signal, which is then picked up by a spacecraft’s instruments. But those instruments can’t always tell the difference between a radio wave coming from one layer and one that’s the result of multiple layers, he says. “They look like one reflection to the radar.”
These results don’t rule out liquid water on Mars, Lalich and his colleagues acknowledge. “This is just saying that there are other options,” he says.
The new finding is “a plausible scenario,” says Aditya Khuller, a planetary scientist at Arizona State University in Tempe who was not involved in the research. But until scientists get a lot more data from the Red Planet, it’ll be difficult to know whether liquid water truly exists on Mars, Khuller says. “It’s important to be open-minded at this point.” More

Signals buried deep in data from gravitational wave observatories imply a collision of two black holes that were clearly born in different places.
Almost all the spacetime ripples that experiments like the Laser Interferometer Gravitational-Wave Observatory, or LIGO, see come from collisions among black holes and neutron stars that are probably close family members (SN: 1/21/21). They were once pairs of stars born at the same time and in the same place, eventually collapsing to form orbiting black holes or neutron stars in old age.
Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up.
Now, a newly noted marriage of black holes, found in existing data from U.S.–based LIGO and its sister observatory Virgo in Italy, seems to be of an unrelated pair. Evidence for this stems from how they were spinning as they merged into one, researchers report in a paper in press at Physical Review D. Black holes that are born in the same place tend to have their spins aligned, like a pair of toy tops spinning on a table, as they orbit each other. But the pair in this case have no correlation between their respective spins and orbits, implying that they were born in different places.
“This is telling us we’ve finally found a pair of black holes that must come from the non-grow-old-and-die-together channel,” says Seth Olsen, a physicist at Princeton University.
Previous events that have turned up in gravitational wave observations show back holes merging that aren’t perfectly aligned, but most are close enough to strongly imply family connections. The new detection, which Olsen and colleagues found by sifting through data that the LIGO-Virgo collaboration released to the public, is different. One of the black holes is effectively spinning upside down.
That can’t easily happen unless the two black holes come from separate places. They probably met late in their stellar lives, unlike the black hole littermates that seem to make up the bulk of gravitational wave observations.
In addition to the merger between unrelated black holes, Olsen and his collaborators identified nine other black hole mergers that had slipped through the prior LIGO-Virgo studies (SN: 8/4/21).
“This is actually the nice thing about this type of analysis,” says LIGO scientific collaboration spokesperson Patrick Brady, a physicist at the University of Wisconsin–Milwaukee who was not affiliated with the new study. “We deliver the data in a format that can be used by other people and then [they] will have access to try out new techniques.”
To compile so many new signals in data that had already been gone over by other researchers, Olsen’s group lowered the analytical bar a little.
“Out of the 10 new ones,” Olsen says, “there are about three of them, statistically, that probably come from noise,” rather than being definitive black hole merger detections. Assuming that the merger of black holes strangers is not among the errant signals, it almost certainly tells a tale of black hole histories distinct from the others seen so far.
“It would be [extremely] unlikely for this to come from two black holes that have been together for their whole lifespan,” Olsen says. “This must have been a capture. That’s cool because we’re finally able to start probing that region of the [black hole] population.”
Brady notes that “we don’t understand the theory [of black hole mergers] well enough to be able to confidently predict all of these types of things.” But the recent study may point to new and interesting opportunities in gravitational wave astronomy. “Let’s follow this clue to see if it really is reflecting something rare,” he says. “Or if not, well, we’ll learn other things.” More




