More stories

  • in

    Betelgeuse has a tiny companion star hidden in plain sight

    Betelgeuse, Betelgeuse! The red supergiant that marks Orion’s left shoulder may have a tiny, unseen companion.

    Two independent studies found evidence of a star about the same mass as the sun, orbiting Betelgeuse about once every 2,100 days.

    “It was very surprising,” says astrophysicist Morgan MacLeod of the Harvard & Smithsonian Center for Astrophysics in Cambridge, Mass. If the star is real, “it’s kind of hidden right there in plain sight.”

    MacLeod and colleagues linked a six-year cycle of Betelgeuse brightening and dimming to a companion star tweaking its orbit, in a paper submitted to arXiv.org September 17. MacLeod examined global, historical measurements dating back to 1896. More

  • in

    Starlink satellites’ leaky radio waves obscure the cosmos

    While SpaceX’s Starlink satellites are enabling internet access and cell phone communications around the globe, they’re also posing a threat to radio astronomy, a new study suggests.

    In some wavelength bands, unintended leakage of electromagnetic radiation from the latest generation of the satellites is more than 30 times brighter than emissions from previous versions, Cees Bassa, a radio astronomer at the Netherlands Institute for Radio Astronomy in Dwingeloo and his colleagues report September 18 in Astronomy & Astrophysics. Because the latest generation of Starlink satellites will orbit as many as 100 kilometers lower than earlier satellites, they’ll seem even brighter to ground-based telescopes. Overall, their brightness could easily mask observations of dimmer objects like distant galaxies or stars. More

  • in

    How did dark matter shape the universe? This physicist has ideas

    At age 12, Tracy Slatyer felt sorry for a book. She read a newspaper article about how lots of people were buying A Brief History of Time by Stephen Hawking. “But then … nobody was actually reading it,” she says. “People were just leaving it on their coffee tables.”

    Determined to rectify this wrong, Slatyer obtained a copy and diligently read each page. The famous physicist’s popular text revealed to her “that math was in some sense an expressive language for describing how things really work,” she says. “That, to me, was exciting.” More

  • in

    A neutrino mass mismatch could shake cosmology’s foundations

    As the youthful universe congealed under the pull of gravity, matter knotted itself into galaxies, galaxy clusters and filaments, weaving a dazzlingly intricate cosmic web. This web’s structure is thanks, in part, to the handiwork of neutrinos — lightweight, subatomic particles that surge through the cosmos in unimaginable numbers.

    Because they streak about at high speeds and rarely interact with other matter, the particles weren’t easily caught in the gravitational molasses of that latticework. So their presence swept away the cobwebs, hindering the formation of fine details in this cosmic filigree. More

  • in

    How to spot tiny black holes that might pass through the solar system 

    Black holes about the size of a hydrogen atom could be careening through the solar system unnoticed. But their days of stealth may be numbered.

    Two teams of researchers propose methods to search for these tiny, hypothetical objects, which would have the mass of an asteroid. Because they would have formed in the universe’s infancy, they are known as primordial black holes.

    If they exist, primordial black holes in this mass range could explain some or all of the universe’s dark matter (SN: 8/7/16). That unknown invisible source of mass exerts gravitational influence on galaxies and, perplexingly, seems to outweigh normal matter by about 6 to 1. Extensive searches for subatomic particles that could explain dark matter have come up empty, putting new focus on primordial black holes (SN: 8/26/24).  More

  • in

    Scientists find a long-sought electric field in Earth’s atmosphere

    For the first time, scientists have measured a long-sought global electric field in the Earth’s atmosphere. This field, called the ambipolar electric field, was predicted to exist decades ago but never detected, until now.

    “That’s the big whoop,” says atmospheric scientist Glyn Collinson of NASA’s Goddard Space Flight Center in Greenbelt, Md. “It’s a whole frickin’ new planetary energy field that’s never been measured before!”

    The field is weak, only 0.55 volts — about as strong as a watch battery, Collinson says. But that’s strong enough to control the shape and evolution of the upper atmosphere, features that could have implications for the suitability of our planet for life. More

  • in

    The Webb telescope’s peek into a stellar nursery finds baby planets too

    A distant stellar nursery holds a clutch of newborn Jupiter-sized worlds, the tiniest of which is surrounded by a dusty disk that might someday give rise to moons. The detailed discovery, made thanks to the unparalleled sensitivity of the James Webb Space Telescope, could provide new insights into star and planetary formation, researchers report in a study in press at The Astronomical Journal.

    Stars arise from enormous clouds of gas and dust when pockets of material collapse under the influence of gravity. The same process can also create smaller nonstellar objects, such as giant planets and brown dwarfs, which lack the internal pressure to fuse hydrogen into helium in their bellies (SN: 7/24/17).

    In the young star cluster NGC1333, located about 1,000 light-years from Earth in the constellation Perseus, a team of astronomers found hundreds of newly formed starlike objects, including six infant worlds with masses between five and 15 times that of Jupiter. The dusty disk around the smallest world is exactly like the kind that circle baby stars and give rise to planetary systems. This dusty disk might one day turn into a pack of orbiting moons, says Adam Langeveld, an astrophysicist at Johns Hopkins University.

    During a recent survey, the James Webb Space Telescope spotted six newborn Jupiter-size worlds, three of which are circled in this annotated composite image of NGC1333. The findings provide insight into the formation of both stars and planets in such regions.ESA, Webb, NASA & CSA, A. Scholz, K. Muzic, A. Langeveld, R. Jayawardhana

    With nothing smaller spotted, it’s possible that he and his colleagues have found the lightest such object that can form with a disk, at least in this particular cluster. And given the parallels between how stars and planets can form, “we’re really probing the limit of the star formation process,” he says.

    Future work will use JWST to look at the chemical composition of the newborn worlds and the surrounding material, potentially helping to explain what kinds of objects can form under what circumstances in this environment. More

  • in

    The historic ‘Wow!’ signal may finally have a source. Sorry, it’s not aliens

    One of the most compelling potential signs of extraterrestrial communication might have an astrophysical explanation.

    Called the “Wow!” signal, the bright burst of radio waves has defied our understanding since its discovery in the 1970s. Now, scientists using archived data from the Arecibo Observatory in Puerto Rico suggest a new possible source for the signal: a cosmic hydrogen cloud that emitted light like a laser.

    “I think we have probably the best explanation so far,” says astrobiologist Abel Méndez of the University of Puerto Rico at Arecibo. Méndez, together with astrophysicist Kevin Ortiz Ceballos of the Harvard and Smithsonian Center for Astrophysics in Cambridge, Mass., and Jorge Zuluaga of the University of Antioquia, Colombia, submitted this idea to arXiv.org on August 16. More