More stories

  • in

    High-energy neutrinos may come from black holes ripping apart stars

    When a star gets too close to a black hole, sparks fly. And, potentially, so do subatomic particles called neutrinos.

    A dramatic light show results when a supermassive black hole rips apart a wayward star. Now, for the second time, a high-energy neutrino has been spotted that may have come from one of these “tidal disruption events,” researchers report in a study accepted in Physical Review Letters.

    These lightweight particles, which have no electric charge, careen across the cosmos and can be detected upon their arrival at Earth. The origins of such zippy neutrinos are a big mystery in physics. To create them, conditions must be just right to drastically accelerate charged particles, which would then produce neutrinos. Scientists have begun lining up likely candidates for cosmic particle accelerators. In 2020, researchers reported the first neutrino linked to a tidal disruption event (SN: 5/26/20). Other neutrinos have been tied to active galactic nuclei, bright regions at the centers of some galaxies (SN: 7/12/18).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Discovered in 2019, the tidal disruption event reported in the new study stood out. “It was extraordinarily bright; it’s really one of the brightest transients ever seen,” says astroparticle physicist Marek Kowalski of Deutsches Elektronen-Synchrotron, or DESY, in Zeuthen, Germany.

    Transients are short-lived flares in the sky, such as tidal disruption events and exploding stars called supernovas. Further observations of the brilliant outburst revealed that it shone in infrared, X-rays and other wavelengths of light.

    Roughly a year after the flare’s discovery, the Antarctic neutrino observatory IceCube spotted a high-energy neutrino. By tracing the particle’s path backward, researchers determined that the neutrino came from the flare’s vicinity.

    The matchup between the two events could be a coincidence. But when combined with the previous neutrino that was tied to a tidal disruption event, the case gets stronger. The probability of finding two such associations by chance is only about 0.034 percent, the researchers say.

    It’s still not clear how tidal disruption events would produce high-energy neutrinos. In one proposed scenario, a jet of particles flung away from the black hole could accelerate protons, which could interact with surrounding radiation to produce the speedy neutrinos.

    ‘We need more data … in order to say that these are real neutrino sources or not,” says astrophysicist Kohta Murase of Penn State University, a coauthor of the new study. If the link between the neutrinos and tidal disruption events is real, he’s optimistic that researchers won’t have to wait too long. “If this is the case, we will see more.”

    But scientists don’t all agree that the flare was a tidal disruption event. Instead, it could have been an especially bright type of supernova, astrophysicist Irene Tamborra and colleagues suggest in the April 20 Astrophysical Journal.

    In such a supernova, it’s clear how energetic neutrinos could be produced, says Tamborra, of the Niels Bohr Institute at the University of Copenhagen. Protons accelerated by the supernova’s shock wave could collide with protons in the medium that surrounds the star, producing other particles that could decay to make neutrinos.

    It’s only recently that observations of high-energy neutrinos and transients have improved enough to enable scientists to find potential links between the two. “It’s exciting,” Tamborra says. But as the debate over the newly detected neutrino’s origin shows, “at the same time, it’s uncovering many things that we don’t know.” More

  • in

    Muon magnetism could hint at a breakdown of physics’ standard model

    A mysterious magnetic property of subatomic particles called muons hints that new fundamental particles may be lurking undiscovered.

    In a painstakingly precise experiment, muons’ gyrations within a magnetic field seem to defy predictions of the standard model of particle physics, which describes known fundamental particles and forces. The result strengthens earlier evidence that muons, the heavy kin of electrons, behave unexpectedly.

    “It’s a very big deal,” says theoretical physicist Bhupal Dev of Washington University in St. Louis. “This could be the long-awaited sign of new physics that we’ve all hoped for.”

    Muons’ misbehavior could point to the existence of new types of particles that alter muons’ magnetic properties. Muons behave like tiny magnets, each with a north and south pole. The strength of that magnet is tweaked by transient quantum particles that constantly flit into and out of existence, adjusting the muon’s magnetism by an amount known as the muon magnetic anomaly. Physicists can predict the value of the magnetic anomaly by considering the contributions of all known particles. If any fundamental particles are in hiding, their additional effects on the magnetic anomaly could give them away.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Muons and electrons share a family resemblance, but muons are about 200 times as massive. That makes muons more sensitive to the effects of hypothetical heavy particles. “The muon kind of hits the sweet spot,” says Aida El-Khadra of the University of Illinois at Urbana-Champaign.

    To measure the magnetic subtleties of the muon, physicists flung billions of the particles around the huge, doughnut-shaped magnet of the Muon g−2 experiment at Fermilab in Batavia, Ill. (SN: 9/19/18). Inside that magnet, the orientation of the muons’ magnetic poles wobbled, or precessed. Notably, the rate of that precession diverged slightly from the standard model expectation, physicists report April 7 in a virtual seminar, and in a paper published in Physical Review Letters.

    “This is a really complex experiment,” says Tsutomu Mibe of the KEK High Energy Accelerator Research Organization in Japan. “This is excellent work.”

    To avoid bias, the team worked under self-imposed secrecy, keeping the final number hidden from themselves as they analyzed the data. At the moment the answer was finally revealed, says physicist Meghna Bhattacharya of the University of Mississippi in Oxford, “I was having goose bumps.” The researchers found a muon magnetic anomaly of 0.00116592040, accurate to within 46 millionths of a percent. The theoretical prediction pegs the number at 0.00116591810. That discrepancy “hints toward new physics,” Bhattacharya says.

    A previous measurement of this type, from an experiment completed in 2001 at Brookhaven National Laboratory in Upton, N.Y., also seemed to disagree with theoretical predictions  (SN: 2/15/01). When the new result is combined with the earlier discrepancy, the measurement diverges from the prediction by a statistical measure of 4.2 sigma — tantalizingly close to the typical five-sigma benchmark for claiming a discovery. “We have to wait for more data from the Fermilab experiment to really be convinced that this is a real discovery, but it is becoming more and more interesting,” says theoretical physicist Carlos Wagner of the University of Chicago.

    According to quantum physics, muons are constantly emitting and absorbing particles in a frenzy that makes theoretical calculations of the magnetic anomaly extremely complex. An international team of more than 170 physicists, co-led by El-Khadra, finalized the theoretical prediction in December 2020 in Physics Reports.

    Many physicists believe that this theoretical prediction is solid, and unlikely to budge with further investigation. But some debate lingers. Using a computational technique called lattice QCD for a particularly thorny part of the calculation gives an estimate that falls closer to the experimentally measured value, physicist Zoltan Fodor and colleagues report April 7 in Nature. If Fodor and colleagues’ calculation is correct, “it could change how we see the experiment,” says Fodor, of Pennsylvania State University, perhaps making it easier to explain the experimental results with the standard model. But he notes that his team’s prediction would need to be confirmed by other calculations before being taken as seriously as the “gold standard” prediction.

    As theoretical physicists continue to refine their predictions, experimental estimates will improve too: Muon g−2 (pronounced gee-minus-two) physicists have analyzed only a fraction of their data so far. And Mibe and colleagues are planning an experiment using a different technique at J-PARC, the Japan Proton Accelerator Research Complex in Tokai, to begin in 2025.

    If the discrepancy between experiment and prediction holds up, scientists will need to find an explanation that goes beyond the standard model. Physicists already believe that the standard model can’t explain everything that’s out there: The universe seems to be pervaded by invisible dark matter, for example, that standard model particles can’t account for.

    Some physicists speculate that the explanation for the muon magnetic anomaly may be connected to known puzzles of particle physics. For example, a new particle might simultaneously explain dark matter and the Muon g−2 result. Or there may be a connection to unexpected features of certain particle decays observed in the LHCb experiment at the CERN particle physics lab near Geneva (SN: 4/20/17), recently strengthened by new results posted at on March 22.

    The Muon g−2 measurement will intensify such investigations, says Muon g−2 physicist Jason Crnkovic of the University of Mississippi. “This is an exciting result because it’s going to generate a lot of conversations.” More

  • in

    Physicists spot a new class of neutrinos from the sun

    Neutrinos spit out by the main processes that power the sun are finally accounted for, physicists report. Two sets of nuclear fusion reactions predominate in the sun’s core and both produce the lightweight subatomic particles in abundance. Scientists had previously detected neutrinos from the most prevalent process. Now, for the first time, neutrinos from the […] More