More stories

  • in

    ‘Designer molecules’ could create tailor-made quantum devices

    Quantum bits made from “designer molecules” are coming into fashion. By carefully tailoring the composition of molecules, researchers are creating chemical systems suited to a variety of quantum tasks.
    “The ability to control molecules … makes them just a beautiful and wonderful system to work with,” said Danna Freedman, a chemist at Northwestern University in Evanston, Ill. “Molecules are the best.” Freedman described her research February 8 at the annual meeting of the American Association for the Advancement of Science, held online.
    Quantum bits, or qubits, are analogous to the bits found in conventional computers. But rather than existing in a state of either 0 or 1, as standard bits do, qubits can possess both values simultaneously, enabling new types of calculations impossible for conventional computers.
    Besides their potential use in quantum computers, molecules can also serve as quantum sensors, devices that can make extremely sensitive measurements, such as sussing out minuscule electromagnetic forces (SN: 3/23/18).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    In Freedman and colleagues’ qubits, a single chromium ion, an electrically charged atom, sits at the center of the molecule. The qubit’s value is represented by that chromium ion’s electronic spin, a measure of the angular momentum of its electrons. Additional groups of atoms are attached to the chromium; by swapping out some of the atoms in those groups, the researchers can change the qubit’s properties to alter how it functions.
    Recently, Freedman and colleagues crafted molecules to fit one particular need: molecular qubits that respond to light. Lasers can set the values of the qubits and help read out the results of calculations, the researchers reported in the Dec. 11 Science. Another possibility might be to create molecules that are biocompatible, Freedman says, so they can be used for sensing conditions inside living tissue.
    Molecules have another special appeal: All of a given type are exactly the same. Many types of qubits are made from bits of metal or other material deposited on a surface, resulting in slight differences between qubits on an atomic level. But using chemical techniques to build up molecules atom by atom means the qubits are identical, making for better-performing devices. “That’s something really powerful about the bottom-up approach that chemistry affords,” said Freedman.
    Scientists are already using individual atoms and ions in quantum devices (SN: 6/29/17), but molecules are more complicated to work with, thanks to their multiple constituents. As a result, molecules are a relatively new quantum resource, Caltech physicist Nick Hutzler said at the meeting. “People don’t even really know what you can do with [molecules] yet.… But people are discovering new things every day.” More

  • in

    Drones could help create a quantum internet

    The quantum internet may be coming to you via drone.
    Scientists have now used drones to transmit particles of light, or photons, that share the quantum linkage called entanglement. The photons were sent to two locations a kilometer apart, researchers from Nanjing University in China report in a study to appear in Physical Review Letters.
    Entangled quantum particles can retain their interconnected properties even when separated by long distances. Such counterintuitive behavior can be harnessed to allow new types of communication. Eventually, scientists aim to build a global quantum internet that relies on transmitting quantum particles to enable ultrasecure communications by using the particles to create secret codes to encrypt messages. A quantum internet could also allow distant quantum computers to work together, or perform experiments that test the limits of quantum physics.
    Quantum networks made with fiber-optic cables are already beginning to be used (SN: 9/28/20). And a quantum satellite can transmit photons across China (SN: 6/15/17). Drones could serve as another technology for such networks, with the advantages of being easily movable as well as relatively quick and cheap to deploy.
    The researchers used two drones to transmit the photons. One drone created pairs of entangled particles, sending one particle to a station on the ground while relaying the other to the second drone. That machine then transmitted the particle it received to a second ground station a kilometer away from the first. In the future, fleets of drones could work together to send entangled particles to recipients in a variety of locations. More

  • in

    Galileo’s famous gravity experiment holds up, even with individual atoms

    According to legend, Galileo dropped weights off of the Leaning Tower of Pisa, showing that gravity causes objects of different masses to fall with the same acceleration. In recent years, researchers have taken to replicating this test in a way that the Italian scientist probably never envisioned — by dropping atoms.
    A new study describes the most sensitive atom-drop test so far and shows that Galileo’s gravity experiment still holds up — even for individual atoms. Two different types of atoms had the same acceleration within about a part per trillion, or 0.0000000001 percent, physicists report in a paper in press in Physical Review Letters.
    Compared with a previous atom-drop test, the new research is a thousand times as sensitive. “It represents a leap forward,” says physicist Guglielmo Tino of the University of Florence, who was not involved with the new study.
    Researchers compared rubidium atoms of two different isotopes, atoms that contain different numbers of neutrons in their nuclei. The team launched clouds of these atoms about 8.6 meters high in a tube under vacuum. As the atoms rose and fell, both varieties accelerated at essentially the same rate, the researchers found.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    In confirming Galileo’s gravity experiment yet again, the result upholds the equivalence principle, a foundation of Albert Einstein’s theory of gravity, general relativity. That principle states that an object’s inertial mass, which determines how much it accelerates when force is applied, is equivalent to its gravitational mass, which determines how strong a gravitational force it feels. The upshot: An object’s acceleration under gravity doesn’t depend on its mass or composition.
    So far, the equivalence principle has withstood all tests. But atoms, which are subject to the strange laws of quantum mechanics, could reveal its weak points. “When you do the test with atoms … you’re testing the equivalence principle and stressing it in new ways,” says physicist Mark Kasevich of Stanford University.
    Kasevich and colleagues studied the tiny particles using atom interferometry, which takes advantage of quantum mechanics to make extremely precise measurements. During the atoms’ flight, the scientists put the atoms in a state called a quantum superposition, in which particles don’t have one definite location. Instead, each atom existed in a superposition of two locations, separated by up to seven centimeters. When the atoms’ two locations were brought back together, the atoms interfered with themselves in a way that precisely revealed their relative acceleration.
    Many scientists think that the equivalence principle will eventually falter. “We have reasonable expectations that our current theories … are not the end of the story,” says physicist Magdalena Zych of the University of Queensland in Brisbane, Australia, who was not involved with the research. That’s because quantum mechanics — the branch of physics that describes the counterintuitive physics of the very small — doesn’t mesh well with general relativity, leading scientists on a hunt for a theory of quantum gravity that could unite these ideas. Many scientists suspect that the new theory will violate the equivalence principle by an amount too small to have been detected with tests performed thus far.
    But physicists hope to improve such atom-based tests in the future, for example by performing them in space, where objects can free-fall for extended periods of time. An equivalence principle test in space has already been performed with metal cylinders, but not yet with atoms (SN: 12/4/17).
    So there’s still a chance to prove Galileo wrong. More

  • in

    A measurement of positronium’s energy levels confounds scientists

    Positronium is positively puzzling.
    A new measurement of the exotic “atom” — consisting of an electron and its antiparticle, a positron — disagrees with theoretical calculations, scientists report in the Aug. 14 Physical Review Letters. And physicists are at a loss to explain it.
    A flaw in either the calculations or the experiment seems unlikely, researchers say. And new phenomena, such as undiscovered particles, also don’t provide an easy answer, adds theoretical physicist Jesús Pérez Ríos of the Fritz Haber Institute of the Max Planck Society in Berlin. “Right now, the best I can tell you is, we don’t know,” says Pérez Ríos, who was not involved with the new research.
    Positronium is composed of an electron, with a negative charge, circling in orbit with a positron, with a positive charge — making what’s effectively an atom without a nucleus (SN: 9/12/07). With just two particles and free from the complexities of a nucleus, positronium is appealingly simple. Its simplicity means it can be used to precisely test the theory of quantum electrodynamics, which explains how electrically charged particles interact.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    A team of physicists from University College London measured the separation between two specific energy levels of positronium, what’s known as its fine structure. The researchers formed positronium by colliding a beam of positrons with a target, where they met up with electrons. After manipulating the positronium atoms with a laser to put them in the appropriate energy level, the team hit them with microwave radiation to induce some of them to jump to another energy level.
    The researchers pinpointed the frequency of radiation needed to make the atoms take the leap, which is equivalent to finding the size of the gap between the energy levels. While the frequency predicted from calculations was about 18,498 megahertz, the researchers measured about 18,501 megahertz, a difference of about 0.02 percent. Given that the estimated experimental error was only about 0.003 percent, that’s a wide gap.
    The team searched for experimental issues that could explain the result, but came up empty. Additional experiments are now needed to help investigate the mismatch, says physicist Akira Ishida of the University of Tokyo, who was not involved with the study. “If there is still significant discrepancy after further precise measurements, the situation becomes much more exciting.”
    The theoretical prediction also seems solid. In quantum electrodynamics, making predictions involves calculating to a certain level of precision, leaving out terms that are less significant and more difficult to calculate. Those additional terms are expected to be too small to account for the discrepancy. But, “it’s conceivable that you could be surprised,” says theoretical physicist Greg Adkins of Franklin & Marshall College in Lancaster, Pa., also not involved with the research.
    If the experiments and the theoretical calculations check out, the discrepancy might be due to a new particle, but that explanation also seems unlikely. A new particle’s effects probably would have shown up in earlier experiments. For example, says Pérez Ríos, positronium’s energy levels could be affected by a hypothetical axion-like particle. That’s a lightweight particle that has the potential to explain dark matter, an invisible type of matter thought to permeate the universe. But if that type of particle was causing this mismatch, researchers would also have seen its effects in measurements of the magnetic properties of the electron and its heavier cousin, the muon.
    That leaves scientists still searching for an answer, says physicist David Cassidy, a coauthor of the study. “It’s going to be something surprising. I just don’t know what.­” More

  • in

    This weird quantum state of matter was made in orbit for the first time

    On the International Space Station, astronauts are weightless. Atoms are, too. That weightlessness makes it easier to study a weird quantum state of matter known as a Bose-Einstein condensate. Now, the first Bose-Einstein condensates made on the space station are reported in the June 11 Nature. The ability to study the strange state of matter […] More

  • in

    Physicists exploit a quantum rule to create a new kind of crystal

    Physicists have harnessed the aloofness of quantum particles to create a new type of crystal. Some particles shun one another because they are forbidden to take on the same quantum state as their neighbors. Atoms can be so reluctant to overlap that they form a crystal-like arrangement even when they aren’t exerting any forces on […] More