More stories

  • in

    Something mysteriously wiped out about 90 percent of sharks 19 million years ago

    About 19 million years ago, something terrible happened to sharks.

    Fossils gleaned from sediments in the Pacific Ocean reveal a previously unknown and dramatic shark extinction event, during which populations of the predators abruptly dropped by up to 90 percent, researchers report in the June 4 Science. And scientists don’t know what might have caused the die-off.

    “It’s a great mystery,” says Elizabeth Sibert, a paleobiologist and oceanographer at Yale University. “Sharks have been around for 400 million years. They’ve been through hell and back. And yet this event wiped out [up to] 90 percent of them.”

    Sharks suffered losses of 30 to 40 percent in the aftermath of the asteroid strike that killed off all nonbird dinosaurs 66 million years ago (SN: 8/2/18). But after that, sharks enjoyed about 45 million years of peaceful ocean dominance, sailing through even large climate disruptions such as the Paleocene-Eocene Thermal Maximum — an episode about 56 million years ago marked by a sudden spike in global carbon dioxide and soaring temperatures — without much trouble (SN: 5/7/15).

    Now, clues found in the fine red clay sediments beneath two vast regions of Pacific add a new, surprising chapter to sharks’ story.

    Sibert and Leah Rubin, then an undergraduate student at the College of the Atlantic in Bar Harbor, Maine, sifted through fish teeth and shark scales buried in sediment cores collected during previous research expeditions to the North and South Pacific oceans.

    “The project came out of a desire to better understand the natural background variability of these fossils,” Sibert says. Sharks’ bodies are made of mostly cartilage, which doesn’t tend to fossilize. But their skin is covered in tiny scales, or dermal denticles, each about the width of a human hair follicle. These scales make for an excellent record of past shark abundance: Like shark teeth, the scales are made of the mineral bioapatite, which is readily preserved in sediments. “And we will find several hundred more denticles compared to a tooth,” Sibert says.

    Researchers sorted fossil shark scales, or denticles, into two main types: those with linear striations (left) and those with geometric shapes and with no striations (right). Following the shark extinction event 19 million years ago, the geometric denticles all but disappeared from ocean sediments.E.C. Sibert and L.D. Rubin/Science 2021

    The researchers weren’t expecting to see anything particularly startling. From 66 million years ago to about 19 million years ago, the ratio of fish teeth to shark scales in the sediments held steady at about 5 to 1. But abruptly — the team estimates within 100,000 years, and possibly even faster — that ratio dramatically changed, to 100 fish teeth for every 1 shark scale.

    The sudden disappearance of shark scales coincided with a change in the abundances of shark scale shapes, which give some clues to changes in biodiversity. Most modern sharks have linear striations on their scales, which may offer some boost to their swimming efficiency. But some sharks lack these striations; instead, the scales come in a variety of geometric shapes. By analyzing the change in the different shapes’ abundances before and after 19 million years ago, the researchers estimated a loss of shark biodiversity of between 70 and 90 percent. The extinction event was “selective,” says Rubin, now a marine scientist at the State University of New York College of Environmental Science and Forestry in Syracuse. After the event, the geometric scales “were almost gone, and never really showed up again in the diversity that they [previously] did.”

    There’s no obvious climate event that might explain such a massive shark population shift, Sibert says. “Nineteen million years ago is not known as a formative time in Earth’s history.” Solving the mystery of the die-off is at the top of a long list of questions she hopes to answer. Other questions include better understanding how the different denticles might relate to shark lineages, and what impact the sudden loss of so many big predators might have had on other ocean dwellers.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    It’s a question with modern implications, as paleobiologist Catalina Pimiento of the University of Zurich and paleobiologist Nicholas Pyenson of the Smithsonian National Museum of Natural History in Washington, D.C., write in a commentary in the same issue of Science. In just the last 50 years, shark abundances in the oceans have dramatically declined by more than 70 percent as a result of overfishing and ocean warming. The loss of sharks — and other top marine predators, such as whales — from the oceans has “profound, complex and irreversible ecological consequences,” the researchers write.

    Indeed, one way to view the study is as a cautionary tale about modern conservation’s limits, says marine conservation biologist Catherine Macdonald of the University of Miami, who was not involved with this study. “Our power to act to protect what remains does not include an ability to fully reverse or undo the effects of the massive environmental changes we have already made.”

    Populations of top ocean predators can be important indicators of those changes — and unraveling how the ocean ecosystem responded to their loss in the past could help researchers anticipate what may happen in the near future, Sibert says. “The sharks are trying to tell us something,” she adds, “and I can’t wait to find out what it is.” More

  • in

    Climate change helped some dinosaurs migrate to Greenland

    A drop in carbon dioxide levels may have helped sauropodomorphs, early relatives of the largest animal to ever walk the earth, migrate thousands of kilometers north past once-forbidding deserts around 214 million years ago.
    Scientists pinpointed the timing of the dinosaurs’ journey from South America to Greenland by correlating rock layers with sauropodomorph fossils to changes in Earth’s magnetic field. Using that timeline, the team found that the creatures’ northward push coincides with a dramatic decrease in CO2, which may have removed climate-related barriers, the team reports February 15 in Proceedings of the National Academy of Sciences.
    The sauropodomorphs were a group of long-necked, plant-eating dinosaurs that included massive sauropods such as Seismosaurus as well as their smaller ancestors (SN: 11/17/20). About 230 million years ago, sauropodomorphs lived mainly in what is now northern Argentina and southern Brazil. But at some point, these early dinosaurs picked up and moved as far north as Greenland.
    Exactly when they could have made that journey has been a puzzle, though. “In principle, you could’ve walked from where they were to the other hemisphere, which was something like 10,000 kilometers away,” says Dennis Kent, a geologist at Columbia University. Back then, Greenland and the Americas were smooshed together into the supercontinent Pangea. There were no oceans blocking the way, and mountains were easy to get around, he says. If the dinosaurs had walked at the slow pace of one to two kilometers per day, it would have taken them approximately 20 years to reach Greenland.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    But during much of the Late Triassic Epoch, which spans 233 million to 215 million years ago, Earth’s carbon dioxide levels were incredibly high — as much as 4,000 parts per million. (In comparison, CO2 levels currently are about 415 parts per million.) Climate simulations have suggested that level of CO2 would have created hyper-arid deserts and severe climate fluctuations, which could have acted as a barrier to the giant beasts. With vast deserts stretching north and south of the equator, Kent says, there would have been few plants available for the herbivores to survive the journey north for much of that time period.
    Previous estimates suggested that these dinosaurs migrated to Greenland around 225 million to 205 million years ago. To get a more precise date, Kent and his colleagues measured magnetic patterns in ancient rocks in South America, Arizona, New Jersey, Europe and Greenland — all locales where sauropodomorphs fossils have been discovered. These patterns record the orientation of Earth’s magnetic field at the time of the rock’s formation. By comparing those patterns with previously excavated rocks whose ages are known, the team found that sauropodomorphs showed up in Greenland around 214 million years ago.
    Vertebrate fossils from the Late Triassic have been found at a number of sites around the world, some of which are marked (black dots) on this map showing how the continents were arranged about 220 million years ago. New dating of rocks at sites in South America and Greenland pinpoint when long-necked dinosaurs known as sauropodomorphs migrated north.Dennis Kent and Lars Clemmensen
    That more precise date for the sauropodomorphs’ migration may explain why it took them so long to start the trek north — and how they survived journey: Earth’s climate was changing rapidly at that time.
    Around the time that sauropodomorphs appeared in Greenland, carbon dioxide levels plummeted within a few million years to 2,000 parts per million, making the climate more travel-friendly to herbivores, the team reports. The reason for this drop in carbon dioxide — which appears in climate records from South America and Greenland — is unknown, but it allowed for an eventual migration northward.
    “We have evidence for all of these events, but the confluence in timing is what is remarkable here,” says Morgan Schaller, a geochemist at Rensselaer Polytechnic Institute in Troy, N.Y., who was not involved with this study. These new findings, he says, also help solve the mystery of why plant eaters stayed put during a time that meat eaters roamed freely.
    “This study reminds us that we can’t understand evolution without understanding climate and environment,” says Steve Brusatte, a vertebrate paleontologist and evolutionary biologist at the University of Edinburgh, also not involved with the study. “Even the biggest and most awesome creatures that ever lived were still kept in check by the whims of climate change.” More