HOTTEST
The lander was listening. On February 18, NASA’s InSight lander on Mars turned its attention to the landing site for another mission, Perseverance, hoping to detect its arrival on the planet.
But InSight heard nothing.
Tungsten blocks ejected by Perseverance during entry landed hard enough to create craters on the Martian surface. Collisions like these — whether from space missions or meteor strikes — send shock waves through the ground. Yet in the first experiment of its kind on another world, InSight failed to pick up any seismic waves from the blocks’ impacts, researchers report October 28 in Nature Communications.
As a result, researchers think that less than 3 percent of the energy from the impacts made its way into the Martian surface. The intensity of impact-generated rumblings varies from planet to planet and is “really important for understanding how the ground will change from a big impact event,” says Ben Fernando, a geophysicist at the University of Oxford.
Perseverance left behind several craters (one indicated with the arrow) after pieces of the mission disengaged as planned during entry, creating a rare opportunity to see how Mars absorbs energy from impacts. Univ. of Arizona, JPL-Caltech/NASA
But getting these measurements is tricky. Scientists need sensitive instruments placed relatively near an impact site. Knowing when and where a meteor will strike is nearly impossible, especially on another world.
Enter Perseverance: a hurtling space object set to hit Mars at an exact time and place (SN: 2/17/21). To help with its entry, Perseverance dropped about 78 kilograms of tungsten as the rover landed about 3,450 kilometers from InSight. The timing and weight of the drop provided a “once-in-a-mission opportunity” to study the immediate seismic effects of an impact from space, Fernando says.
The team had no idea whether InSight would be able to detect the blocks’ impacts or not, but the quiet arrival speaks volumes. “It lets us put an upper limit on how much energy from the tungsten blocks turned into seismic energy,” Fernando says. “We’ve never been able to get that number for Mars before.”
Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up. More
The End of EverythingKatie MackScribner, $26
Eventually, the universe will end. And it won’t be pretty.
The universe is expanding at an accelerating clip, and that evolution, physicists expect, will lead the cosmos to a conclusion. Scientists don’t know quite what that end will look like, but they have plenty of ideas. In The End of Everything, theoretical astrophysicist Katie Mack provides a tour of the admittedly bleak possibilities. But far from being depressing, Mack’s account mixes a sense of reverence for the wonders of physics with an irreverent sense of humor and a disarming dose of candor.
Some potential finales are violent: If the universe’s expansion were to reverse, the cosmos collapsing inward in a Big Crunch, extremely energetic swells of radiation would ignite the surfaces of stars, exploding them. Another version of the end is quieter but no less terrifying: The universe’s expansion could continue forever. That end, Mack writes, “like immortality, only sounds good until you really think about it.” Endless expansion would beget a state known as “heat death” — a barren universe that has reached a uniform temperature throughout (SN: 10/2/09). Stars will have burned out, and black holes will have evaporated until no organized structures exist. Nothing meaningful will happen anymore because energy can no longer flow from one place to another. In such a universe, time ceases to have meaning.
Perhaps more merciful than the purgatory of heat death is the possibility of a Big Rip, in which the universe’s expansion accelerates faster and faster, until stars and planets are torn apart, molecules are shredded and the very fabric of space is ripped apart.Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
These potential endings are all many billions of years into the future — or perhaps much further off. But there’s also the possibility that the universe could end abruptly at any moment. That demise would not be a result of expansion or contraction, but due to a phenomenon called vacuum decay. If the universe turns out to be fundamentally unstable, a tiny bubble of the cosmos could convert to a more stable state. Then, the edge of that bubble would expand across the cosmos at the speed of light, obliterating anything in its path with no warning. In a passage a bit reminiscent of a Kurt Vonnegut story, Mack writes, “Maybe it’s for the best that you don’t see it coming.”
Already known for her engaging Twitter personality, public lectures and popular science writing, Mack has well-honed scientific communication chops. Her evocative writing about some of the most violent processes in the universe, mixed with her obvious glee at the unfathomable grandness of it all, should both satisfy longtime physics fans and inspire younger generations of physicists.
Reading Mack’s prose feels like learning physics from a brilliant, quirky friend. The book is sprinkled with plenty of informal quips: “I’m not going to sugarcoat this. The universe is frickin’ weird.” Readers will find themselves good-naturedly rolling their eyes at some of the goofy footnotes and nerdy pop-culture references. At the same time, the book delves deep into gritty physics details, thoroughly explaining important concepts like the cosmic microwave background — the oldest light in the universe — and tackling esoteric topics in theoretical physics. Throughout, Mack does an excellent job of recognizing where points of confusion might trip up a reader and offers clarity instead.
Mack continues a long-standing tradition of playfulness among physicists. That’s how we got stuck with somewhat cheesy names for certain fundamental particles, such as “charm” and “strange” quarks, for example. But she also brings an emotional openness that is uncommon among scientists. Sometimes this is conveyed by declarations in all caps about how amazing the universe is. But other times, it comes when Mack makes herself vulnerable by leveling with the reader about how unnerving this topic is: “I’m trying not to get hung up on it … the end of this great experiment of existence. It’s the journey, I repeat to myself. It’s the journey.”
Yes, this is a dark subject. Yes, the universe will end, and everything that has ever happened, from the tiniest of human kindnesses to the grandest of cosmic explosions, will one day be erased from the record. Mack struggles with what the inevitable demise of everything means for humankind. By contemplating the end times, we can refine our understanding of the universe, but we can’t change its fate.
Buy The End of Everything from Amazon.com. Science News is a participant in the Amazon Services LLC Associates Program. Please see our FAQ for more details. MoreSource: Space & Astronomy – www.sciencenews.org More
The closest black hole yet found is just 1,560 light-years from Earth, a new study reports. The black hole, dubbed Gaia BH1, is about 10 times the mass of the sun and orbits a sunlike star.
Most known black holes steal and eat gas from massive companion stars. That gas forms a disk around the black hole and glows brightly in X-rays. But hungry black holes are not the most common ones in our galaxy. Far more numerous are the tranquil black holes that are not mid-meal, which astronomers have dreamed of finding for decades. Previous claims of finding such black holes have so far not held up (SN: 5/6/20; SN: 3/11/22).
Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up.
So astrophysicist Kareem El-Badry and colleagues turned to newly released data from the Gaia spacecraft, which precisely maps the positions of billions of stars (SN: 6/13/22). A star orbiting a black hole at a safe distance won’t get eaten, but it will be pulled back and forth by the black hole’s gravity. Astronomers can detect the star’s motion and deduce the black hole’s presence.
Out of hundreds of thousands of stars that looked like they were tugged by an unseen object, just one seemed like a good black hole candidate. Follow-up observations with other telescopes support the black hole idea, the team reports November 2 in Monthly Notices of the Royal Astronomical Society.
Gaia BH1 is the nearest black hole to Earth ever discovered — the next closest is around 3,200 light-years away. But it’s probably not the closest that exists, or even the closest we’ll ever find. Astronomers think there are about 100 million black holes in the Milky Way, but almost all of them are invisible. “They’re just isolated, so we can’t see them,” says El-Badry, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.
The next data release from Gaia is due out in 2025, and El-Badry expects it to bring more black hole bounty. “We think there are probably a lot that are closer,” he says. “Just finding one … suggests there are a bunch more to be found.” More
After nearly three years, NASA’s Ingenuity helicopter, the first spacecraft to undertake a powered flight on another world, has ended its mission. Officials at the agency confirmed on January 25 that the history-making quad-copter has sustained damage to one of its rotor blades and is no longer capable of flying.
“While we knew this day was inevitable, it doesn’t make it any easier,” said Lori Glaze, NASA’s planetary science division director, during a news conference on the status of the quad-copter. More