HOTTEST
All eyes are on Mars — and all ears, too. When NASA’s Perseverance rover touches down on the Red Planet on February 18, the landing will be recorded with sight, sound and maybe even touch.
The rover will cap off a month of Mars arrivals from space agencies around the world (SN: 7/30/20). Perseverance joins Hope, the first interplanetary mission from the United Arab Emirates, which successfully entered Mars orbit on February 9; and Tianwen-1, China’s first Mars mission, which arrived on February 10 and will deploy a rover to the Martian surface in May.
NASA will broadcast Perseverance’s landing on YouTube starting at 2:15 p.m. EST. The actual moment of touchdown is expected at approximately 3:55 p.m. EST. Perseverance is designed to explore an ancient river delta called Jezero crater, searching for signs of ancient life and collecting rocks for a future mission to return to Earth (SN: 7/28/20).
The rover will use the landing system pioneered by its predecessor, Curiosity, which has been exploring Mars since 2012 (SN: 8/6/12). But in a first for Mars touchdowns, this rover will record its own landing with dedicated cameras and a microphone.
As the craft carrying Perseverance zooms through the thin Martian atmosphere, three cameras will look up at the parachute slowing it down from supersonic speeds. When a rocket-powered “sky crane” platform lowers the rover to the ground, a fourth camera on the platform will record the rover’s descent. Another camera on the rover will look back up at the platform, and a sixth camera will look at the ground.
Perseverance will use the “sky crane” landing system pioneered by its predecessor, Curiosity. The landing involves dangling the rover from a floating platform on cables and touching down directly on its wheels.JPL-Caltech/NASA
Perseverance will use the “sky crane” landing system pioneered by its predecessor, Curiosity. The landing involves dangling the rover from a floating platform on cables and touching down directly on its wheels.JPL-Caltech/NASA
“The goal is to see the video and the action of getting from high up in the atmosphere down to the surface,” says engineer David Gruel of NASA’s Jet Propulsion Laboratory in Pasadena, who was the engineering lead for that six-camera system, called EDL-Cam. He hopes every engineer on the team has an image of the rover hanging below the descent stage as their computer desktop background six months from now.
Because it will take more than 11 minutes for signals to travel between Earth and Mars, the cameras won’t stream the landing movie in real time. And after Perseverance lands, engineers will be focused on making sure the rover is healthy and able to collect science data, so the landing videos won’t be among the first data sent back. Gruel expects to be able to share what the rover saw four days after landing, on February 22.Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Perseverance will also carry microphones to record first-ever audio of a Mars landing. Unlike the landing cameras, the microphones will continue to work after touchdown, hopefully helping the engineering team keep track of the rover’s health. Motors sound different when they get clogged with dust, for instance, Gruel says. The team will hear the sound of the rover’s wheels crunching across the Martian surface, and maybe the sound of the wind blowing.
“Are we going to hear a dust devil? What might a dust devil sound like? Could we hear rocks rolling down a hill?” Gruel asks. “You never know what we might stumble onto.”
Sound will add a way to share Mars with people who have trouble seeing, Gruel notes. “It might appeal to a whole other element of the population who might not have been able to experience past missions the same way,” he says.
[embedded content]
Watch NASA’s live coverage of the Perseverance landing here starting at 2:15 p.m. EST.
Elsewhere on Mars, the InSight lander will be listening to the landing too (SN: 2/24/20). The lander’s seismometer may be able to feel vibrations when two tungsten weights that Perseverance carried to Mars for stability smack into the ground before the rover lands, geophysicist Benjamin Fernando of the University of Oxford and colleagues report in a paper posted December 3 to eartharxiv.org and submitted to JGR Planets.
“No one’s ever tried to do this before,” Fernando says.
The ground will move by at most 0.1 nanometers per second, Fernando and colleagues calculated. “It’s incredibly small,” he says. “But the seismometer is also incredibly sensitive.”
The team may be able to catch that tiny signal because they know exactly when and where the impact will happen. If the lander does pick up the signal, it will tell scientists something about how fast seismic waves travel through the ground, a clue to the details of Mars’ interior structure. And even if they don’t feel anything, that will put limits on the waves’ speed. “It still teaches us something,” Fernando says.
The InSight team hopes to also feel vibrations from Tianwen-1 when its rover touches down in May. “Detecting one would be great,” Fernando says. “Detecting two would be like, amazing.” MoreEarth’s magnetic field protects life from harmful cosmic radiation. But sometime between about 590 million and 565 million years ago, that security blanket seems to have been much thinner — with far-reaching effects for the development of life on Earth, researchers suggest.
A weaker magnetic field could account for the higher levels of oxygen recorded in the Earth’s atmosphere and oceans around that time — and for the ensuing proliferation of macroscopic marine animals, the team reports in the May 2 Communications Earth & Environment. More
For the first time, astronomers may have seen direct evidence of a planet forming around a young star. A spiral disk of gas and dust surrounding the star AB Aurigae contains a small S-shaped twist near the spiral’s center, infrared telescope images show. That twist “is the precise spot where a new planet must be […] More
PASADENA, Calif. — A lucky celestial alignment has given astronomers a rare look at a galaxy in the early universe that is seeding its surroundings with the elements needed to forge subsequent generations of stars and galaxies.
Seen as it was just 700 million years after the Big Bang, the distant galaxy has gas flowing over its edges. It is the earliest-known run-of-the-mill galaxy, one that could have grown into something like the Milky Way, to show such complex behavior, astronomer Hollis Akins said June 14 during a news conference at the American Astronomical Society meeting.
Sign Up For the Latest from Science News
Headlines and summaries of the latest Science News articles, delivered to your inbox
Thank you for signing up!
There was a problem signing you up.
“These results also tell us that this outflow activity seems to be able to shape galaxy evolution, even in this very early part of the universe,” said Akins, an incoming graduate student at the University of Texas at Austin. He and colleagues also submitted their findings June 14 to arXiv.org.
The galaxy, called A1689-zD1, shows up in light magnified by Abell 1689, a large galaxy cluster that can bend and intensify, or gravitationally lens, light from the universe’s earliest galaxies (SN: 2/13/08; SN: 10/6/15). Compared with other observed galaxies in the early universe, A1689-zD1 doesn’t make a lot of stars — only about 30 suns each year — meaning the galaxy isn’t very bright to our telescopes. But the intervening cluster magnified A1689-zD1’s light by nearly 10 times.
Akins and colleagues studied the lensed light with the Atacama Large Millimeter/submillimeter Array, or ALMA, a large network of radio telescopes in Chile. The team mapped the intensities of a specific spectral line of oxygen, a tracer for hot ionized gas, and a spectral line of carbon, a tracer for cold neutral gas. Hot gas shows up where the bright stars are, but the cold gas extends four times as far, which the team did not expect.
“There has to be some mechanism [to get] carbon out into the circumgalactic medium,” the space outside of the galaxy, Akins says.
Only a few scenarios could explain that outflowing gas. Perhaps small galaxies are merging with A1689-zD1 and flinging gas farther out where it cools, Akins said. Or maybe the heat from star formation is pushing the gas out. The latter would be a surprise considering the relatively low rate of star formation in this galaxy. While astronomers have seen outflowing gas in other early-universe galaxies, those galaxies are bustling with activity, including converting thousands of solar masses of gas into stars per year.
Galaxy A169-zD1 (pictured, in radio waves) exists in the universe’s first 700 million years.ALMA/ESO, NAOJ and NRAO; H. Akins/Grinnell College; B. Saxton/NRAO/AUI/NSF
The researchers again used the ALMA data to measure the motions of both the cold neutral and hot ionized gas. The hot gas showed a larger overall movement than the cold gas, which implies it’s being pushed from A1689-zD1’s center to its outer regions, Akins said at the news conference.
Despite the galaxy’s relatively low rate of star formation, Akins and his colleagues still think the 30-solar-masses of stars a year heat the gas enough to push it out from the center of the galaxy. The observations suggest a more orderly bulk flow of gas, which implies outflows, however the researchers are analyzing the movement of the gas in more detail and cannot yet rule out alternate scenarios.
They think when the hot gas flows out, it expands and eventually cools, Akins said, which is why they see the colder gas flowing over the galaxy’s edge. That heavy-element-rich gas enriches the circumgalactic medium and will eventually be incorporated into later generations of stars (SN: 6/17/15). Due to gravity’s pull, cool gas, often with fewer heavy elements, around the galaxy also falls toward its center so A1689-zD1 can continue making stars.
These observations of A1689-zD1 show this flow of gas happens not only in the superbright, extreme galaxies, but even in normal ones in the early universe. “Knowing how this cycle is working helps us to understand how these galaxies are forming stars, and how they grow,” says Caltech astrophysicist Andreas Faisst, who was not involved in the study.
Astronomers aren’t done learning about A1689-zD1, either. “It’s a great target for follow-up observations,” Faisst says. Several of Akins’s colleagues plan to do just that with the James Webb Space Telescope (SN: 10/6/21). More
This series of brief radio signals comes from a galaxy 1.6 billion light-years away EARLY DAYS The Canadian Hydrogen Intensity Mapping Experiment in western Canada spotted 13 new fast radio bursts last summer, one of which repeats. The telescope wasn’t even operating at full capacity at the time. CHIME Collaboration Share this: This article is […] More