Physicists at Martin Luther University Halle-Wittenberg (MLU) and Lanzhou University in China developed a simple concept that could improve significantly magnetic-based data processing. Using ultrashort electric pulses in the terahertz range, data can be written, read and erased very quickly. This would make data processing faster, more compact and energy efficient. The researchers confirmed their theory by running complex simulations and the results were published in the journal NPG Asia Materials.
Magnetic data storage is indispensable for storing securely the huge amount of data generated every day, for instance through social networks. Once stored, the information can still be retrieved after many years. Charge-based data storage used for example in mobile phones is much more short-lived when there is no energy supply. Traditional magnetic hard drives and components have disadvantages of their own, due to the moving mechanical parts and the need for magnetic fields which makes them more power consuming and relatively slow when reading and writing data.
“We were after a fast and energy-efficient alternative,” explains Professor Jamal Berakdar from the Institute of Physics at MLU. He and his colleagues from Lanzhou University came up with a simple idea. By using ultrashort pulses in the terahertz range, information could be written in magnetic nano-vortices and retrieved within picoseconds. Theoretically, this renders possible billions of read and write operations per second without the need for magnetic fields. “With the appropriately shaped pulses the data can be processed very quickly at low energy cost,” says Berakdar. The new concept is based on existing terahertz and magnetism technologies. “It exploits advances in electric pulse generation and nanomagnetism.”
So far, the method has been tested in computer simulations. “In recent years there have been fantastic advances in generating and controlling electrical pulses,” says Berakdar. Therefore, it makes sense to explore new ways to apply these pulses to data storage. The concept presented by the researchers offers a simple tool for controlling magnetic nano-vortices and can therefore be directly utilised for new storage technologies.
Story Source:
Materials provided by Martin-Luther-Universität Halle-Wittenberg. Note: Content may be edited for style and length.