in

In the driver’s seat: Study explores how we interact with remote drivers

Newcastle University research is helping shed light on the important interaction between users and remote drivers that oversee the operation of automated vehicles.

Automated vehicles (AVs), also known as driverless vehicles, hold the promise of transforming mobility, offering numerous benefits such as safer roads, increased accessibility, enhanced productivity, economic growth, and contributions to decarbonisation.

While lower-level automation systems provide assistance to drivers, higher-level automation (SAE Level 4) allows vehicles to operate without on-board driver input. A crucial failsafe mechanism for Level 4 Automated Vehicles (L4 AV) involves remote driving through a teleoperation system controlled by a remote driver. However, understanding end-users’ needs and requirements in this context remains a significant research gap.

Publishing their findings in the journal Transportation Research Part F: Traffic Psychology and Behaviour,an international research team led by Newcastle University studied the preferences of potential end-users for a 5G-enabled L4 AV with a remote teleoperation system as a failsafe mechanism.

The researchers conducted qualitative semi-structured interviews with 29 potential end-users to explore the interaction between drivers, automation, and remote drivers in L4 AVs.

The results show that end-users support the failsafe feature of remote driving, envisioning positive applications for night driving, long distances, motorways, and more. The exploration of L4 AV as a ‘designated driver’ to reduce alcohol-impaired driving garnered interest, and concerns were raised about the reliability of the teleoperation system, remote driver performance, 5G network connection, cybersecurity, and privacy issues.

The findings reveal that end-users expressed a desire to understand how remote teleoperator drivers operate the vehicle remotely, highlighting the importance of clear communication.

The study participants also indicated that they prefer drivers to be focused and not multitasking during teleoperation. In addition, they require remote drivers based in the same country as the L4 AV to prevent issues such as unfamiliar road layouts, different traffic rules, cultural driving style variations, liability concerns, and time differences from affecting performance.

Study lead author, Dr Shuo Li, Research Associate at Newcastle University’s School of Engineering, said: “As we journey into the realm of connected and automated vehicles, our research provides comprehensive insights and highlights key aspects of the new driver-automation-remote driver interaction in 5G-enabled Level 4 Automated Vehicles. Offering end-users a transparent, qualified, and location-aware remote driving experience is not only an added feature but also crucial for safety and acceptance of automated mobility.”

Study co-author, Professor Phil Blythe CBE, Professor of Intelligent Transport Systems, and head of the Future Mobility Group, Newcastle University, added: “Newcastle University and it’s regional partners are at the leading edge of investigating what is needed to practically and safely introduce Automated Vehicles and in particular the challenge of Connected and Automated Logistics — which will deliver significant benefits to the region and the sector in general. These research findings on the use of remote, teleoperations to supervise driverless AV’s is a critical cog in the automation machine and will, through our on-going work, also inform on workload and thus potentially how many vehicles an individual teleoperator can safely handle. Overall this is part of our wider objective to ensure the Newcastle University and the NE remain at the forefront of automation and future logistics.”

The experts recommend future research that explores the potential role of L4 AV as a ‘designated driver’ and its impact on road safety. This work has been funded through DCMS 5G CAL and CCAV and Innovate UK V-CAL projects. These projects are regional consortium developing the concept and technologies for Connected and Autonomous Logistics and demonstrating them on routes between VANTEC logistics and Nissan. The work is also supported by the CCAV and Innovate UK SAMS project. The project aims to redefine urban mobility by deploying and testing autonomous zero-emission shuttles in a real-world setting.


Source: Computers Math - www.sciencedaily.com

Clinical predictive models created by AI are accurate but study-specific, researchers find

Let me check my phone again