More stories

  • in

    Marsquakes reveal the Red Planet boasts a liquid core half its diameter

    Mars has had its first CT scan, thanks to analyses of seismic waves picked up by NASA’s InSight lander. Diagnosis: The Red Planet’s core is at least partially liquid, as some previous studies had suggested, and is somewhat larger than expected.

    InSight reached Mars in late 2018 and soon afterward detected the first known marsquake (SN: 11/26/18; SN: 4/23/19). Since then, the lander’s instruments have picked up more than a thousand temblors, most of them minor rumbles. Many of those quakes originated at a seismically active region more than 1,000 kilometers away from the lander. A small fraction of the quakes had magnitudes ranging from 3.0 to 4.0, and the resulting vibrations have enabled scientists to probe Mars and reveal new clues about its inner structure.

    Simon Stähler, a seismologist at ETH Zurich, and colleagues analyzed seismic waves from 11 marsquakes, looking for two types of waves: pressure and shear. Unlike pressure waves, shear waves can’t pass through a liquid, and they move more slowly, traveling side to side through solid materials, rather than in a push-and-pull motion in the same direction a wave is traveling like pressure waves do.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    Of those 11 events, six sets of vibrations included shear waves strong enough to stand out from background noise. The strength of those shear waves suggests that they reflected off of the outer surface of a liquid core, rather than entering a solid core and being partially absorbed, Stähler says. And the difference in arrival times at InSight for the pressure waves and shear waves for each quake suggest that Mars’ core is about 3,660 kilometers in diameter, he and colleagues report in the July 23 Science.

    That’s a little more than half of the diameter of the entire planet, larger than most previous estimates. The Red Planet’s core is so big, in fact, that it blocks InSight from receiving certain types of seismic waves from a large part of the planet. That, in turn, suggests that Mars may be more seismically active than the lander’s sensors can detect. Indeed, one of the regions in the lander’s seismic blind spot is the Tharsis region, home to some of Mars’ largest volcanoes. Volcanic activity there, as well as the motion of molten rock within the crust in that region, could trigger quakes or seismic waves.

    Seismic waves (red lines in this illustration) traveling through Mars from a quake’s source (example, red dot) to the InSight lander (white dot) reveal the Red Planet’s internal structure, including a massive core (yellow-white) more than half the diameter of the planet.Chris Bickel/Science

    While the newly analyzed data confirm the planet’s outer core is liquid, it’s not clear yet whether Mars has a solid inner core like Earth, says study coauthor Amir Khan, a geophysicist also at ETH Zurich. “The signal should be there in the seismic data,” he says. “We just need to locate it.”

    In a separate analysis also published in Science, Khan and colleagues suggest that InSight’s seismic blind spot may also stem, in part, from the way that seismic waves slow down and bend as they travel deep within the planet. Changes in seismic wave speed and direction can result from gradual variations in rock temperature or density, for example.

    Mars’ seismic waves also hint at the thickness of the planet’s crust. As they bounce back and forth within the planet, the waves bounce off interfaces between different layers and types of rocks, says Brigitte Knapmeyer-Endrun, a seismologist at the University of Cologne in Bergisch Gladbach, Germany. In a separate study in Science, she and her team analyzed seismic signals that reflected off several such interfaces near Mars’ surface, making it difficult to determine the depth at which the planet’s crust ends and the underlying mantle begins, she says. The researchers concluded, however, that the average thickness of the crust likely lies between 24 and 72 kilometers. For comparison, Earth’s oceanic crust is about 6 to 7 kilometers thick, while the planet’s continental crust averages from 35 to 40 kilometers thick.

    Together, these seismic analyses are the first to investigate the innards of a rocky planet other than Earth, Stähler says. As such, they provide “ground truth” for measurements made by spacecraft orbiting Mars, and could help scientists better interpret data gathered from orbit around other planets, such as Mercury and Venus.

    The findings could also provide insights that would help planetary scientists better understand how Mars formed and evolved over the life of the solar system, and how the Red Planet ended up so unalike Earth, says Sanne Cottaar, a geophysicist at the University of Cambridge. Cottaar wrote a commentary, also published in Science, on the new research. “Mars was put together with similar building blocks” as Earth, she says, “but had a different result.” More

  • in

    NASA’s Perseverance Mars rover has begun its first science campaign

    NASA’s Perseverance rover on Mars has seen its future, and it’s full of rocks. Lots and lots of rocks. After spending the summer trundling through Jezero Crater and checking out the sights, it’s now time for Percy to get to work, teasing out the geologic history of its new home and seeking out signs of ancient microbial life.

    “We’ve actually been on a road trip,” project manager Jennifer Trosper, who is based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., said at a July 21 news conference. “And during it, we will take our very first sample from the surface of Mars.”

    Percy is about 1 kilometer south of where it landed on February 18 (SN: 2/17/21). After driving itself around a region of sand dunes, accompanied by its tagalong helicopter Ingenuity (SN: 4/30/21), the robotic explorer has pulled up to its first sampling spot: a garden of flat, pale stones dubbed paver stones. “This is the area where we are really going to be digging in, both figuratively and literally, to understand the rocks that we have been on for the last several months,” said Kenneth Farley, Perseverance project scientist at Caltech.

    The team has been trying to figure out whether these rocks are volcanic or sedimentary. “We still don’t have the answer,” Farley said. Images taken a few centimeters above the surface show what the team is up against: The rocks are littered with dust and pebbles, probably blown in from elsewhere, and the smoother surfaces have a mysterious purplish coating. “All of these factors conspire to prevent us from peering into the rock and actually seeing what it is made out of,” he said.

    In the coming weeks, Percy will bore a smooth cavity in one of those rocks and get below the surface crud. Instruments on its robotic arm will then move in close to produce detailed chemical and mineralogical maps that will reveal the rocks’ true nature. Then, sometime in mid-August, the team will extract its first sample. That sample will go into a tube that will eventually get dropped off — along with samples from other locales — for some future mission to pick up and bring to Earth (SN: 7/28/20).

    Cameras scouting farther afield have turned up future sampling sites. A small far-off hill shows hints of finely layered rock that may be mud deposits. “This is exactly the kind of rock that we are most interested in investigating for looking for potential biosignatures,” Farley said.

    And the way that rocks are strewn about an ancient river delta in the distance suggests that the lake that once filled Jezero Crater went through multiple episodes of filling in and drying up. If true, Farley said, then the crater may have preserved “multiple time periods when we might be able to look for evidence of ancient life that might have existed on the planet.” More

  • in

    Lakes of liquid water at Mars’ southern ice cap may just be mirages

    Maybe hold off on that Martian ice fishing trip. Two new studies splash cold water on the idea that potentially habitable lakes of liquid water exist deep under the Red Planet’s southern polar ice cap.

    The possibility of a lake roughly 20 kilometers across was first raised in 2018, when the European Space Agency’s Mars Express spacecraft probed the planet’s southern polar cap with its Mars Advanced Radar for Subsurface and Ionosphere Sounding, or MARSIS, instrument. The orbiter detected bright spots on radar measurements, hinting at a large body of liquid water beneath 1.5 kilometers of solid ice that could be an abode to living organisms (SN: 7/25/18). Subsequent work found hints of additional pools surrounding the main lake basin (SN: 9/28/20).

    But the planetary science community has always held some skepticism over the lakes’ existence, which would require some kind of continuous geothermal heating to maintain subglacial conditions (SN: 2/19/19). Below the ice, temperatures average –68° Celsius, far past the freezing point of water, even if the lakes are a brine containing a healthy amount of salt, which lowers water’s freezing point. An underground magma pool would be needed to keep the area liquid — an unlikely scenario given Mars’ lack of present-day volcanism.

    “If it’s not liquid water, is there something else that could explain the bright radar reflections we’re seeing?” asks planetary scientist Carver Bierson of Arizona State University in Tempe.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    In a study published in the July 16 Geophysical Research Letters, Bierson and colleagues describe a couple other substances that could explain the reflections. Radar’s reflectivity depends on the electrical conductivity of the material the radar signal moves through. Liquid water has a fairly distinctive radar signature, but examining the electrical properties of both clay minerals and frozen brine revealed those materials could mimic this signal.

    Adding weight to the non-lake explanation is a study from an independent team, published in the same issue of Geophysical Research Letters. The initial 2018 watery findings were based on MARSIS data focused on a small section of the southern ice cap, but the instrument has now built up three-dimensional maps of the entire south pole, where hundreds to thousands of additional bright spots appear.

    “We find them literally all over the region,” says planetary scientist Aditya Khuller, also of Arizona State University. “These signatures aren’t unique. We see them in places where we expect it to be really cold.”

    Creating plausible scenarios to maintain liquid water in all of these locations would be a tough exercise. Both Khuller and Bierson think it is far more likely that MARSIS is pointing to some kind of widespread geophysical process that created minerals or frozen brines.

    While previous work had already raised doubts about the lake interpretation, these additional data points might represent the pools’ death knell. “Putting these two papers together with the other existing literature, I would say this puts us at 85 percent confidence that this is not a lake,” says Edgard Rivera-Valentín, a planetary scientist at the Lunar and Planetary Institute in Houston who was not involved in either study.

    The lakes, if they do exist, would likely be extremely cold and contain as much as 50 percent salt — conditions in which no known organisms on Earth can survive. Given that, the pools wouldn’t make particularly strong astrobiological targets anyway, Rivera-Valentín says. (SN: 5/11/20).

    Lab work exploring how substances react to conditions at Mars’ southern polar ice cap could help further constrain what generates the bright radar spots, Bierson says.

    In the meantime, Khuller already has his eye on other areas of potential habitability on the Red Planet, such as warmer midlatitude regions where satellites have seen evidence of ice melting in the sun. “I think there are places where liquid water could be on Mars today,” he says. “But I don’t think it’s at the south pole.”  More

  • in

    NASA will be heading back to Venus for the first time in decades

    Earth’s evil twin, here we come. NASA’s next two missions, named DAVINCI+ and VERITAS, are heading to Venus, administrator Bill Nelson announced at a news conference June 2.

    “These two sister missions both aim to understand how Venus became an inferno-like world capable of melting lead at the surface,” Nelson said. “We hope these missions will further our understanding of how Earth evolved and why it’s currently habitable, when others in our solar system are not.”

    The missions were selected from four finalists, two headed to Venus, one to Jupiter’s volcanic moon Io, and one to Neptune’s largest moon Triton. The two Venus missions had applied and been rejected in earlier spacecraft selection rounds.

    Venus is almost the same size as Earth, but it seems to have had a different history. Although there’s evidence that it was once covered in oceans and could have been habitable, today it’s a scorched hellscape with clouds of sulfuric acid. No spacecraft has lasted more than two hours on its surface (SN: 2/13/18). And no NASA mission has visited in more than 30 years.

    The DAVINCI+ mission includes a probe (illustrated here) that will drop through the Venusian atmosphere, tasting and measuring as it goes.GSFC/NASA

    One of the newly selected missions, DAVINCI+, will be the first to send a probe into the planet’s thick, hot atmosphere. The spacecraft will be a ball about a meter in diameter that will sink through Venus’ atmosphere over the course of about an hour, taking measurements of how the content of the planet’s atmosphere changes from top to bottom. The probe will also take some of the highest-resolution photos of the Venusian surface yet on its way down.

    Those observations will help scientists figure out how Venus’ water has changed over time, its volcanic activity now and in the past, and the planet’spast potential for habitability (SN: 8/26/16). The data will also help scientistsinterpret observations of Earth-sized exoplanets with atmospheres that could be taken with the upcoming James Webb Space Telescope, giving researchers a way to tell exo-Earths from exo-Venuses (SN: 10/4/19).

    The other mission, VERITAS, will orbit Venus and study the planet’s surface to figure out its history and why it’s so different from Earth. The orbiter will map the surface with radar, chart elevations to make 3-D maps and look for plate tectonics and volcanism still ongoing on Venus. These observations could provide data for afuture mission to land on Venus (SN: 12/23/20).

    The missions are expected to launch sometime between 2028 and 2030, NASA said in a statement.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox More

  • in

    Laser experiments suggest helium rain falls on Jupiter

    Sprinkles of helium rain may fall on Jupiter.

    At pressures and temperatures present within the gas giant, the hydrogen and helium that make up the bulk of its atmosphere don’t mix, according to laboratory experiments reported in the May 27 Nature. That suggests that deep within Jupiter’s atmosphere, hydrogen and helium separate, with the helium forming droplets that are denser than the hydrogen, causing them to rain down (SN: 4/19/21).

    Jupiter’s marbled exterior is pretty familiar territory, but it’s still not clear what happens far below the cloud tops. So researchers designed an experiment to compress hydrogen and helium, reaching pressures nearly 2 million times Earth’s atmospheric pressure and temperatures of thousands of degrees Celsius, akin to inner layers of gas giants.

    “We are reproducing the conditions inside the planets,” says physicist Marius Millot of Lawrence Livermore National Laboratory in California.

    Millot and colleagues squeezed a mixture of hydrogen and helium between two diamonds and hit the concoction with a powerful laser to compress it even further. As the pressure and temperature increased, the researchers saw an abrupt increase in how reflective the material was. That suggests that helium was separating from the hydrogen, which becomes a liquid metal under these conditions (SN: 8/10/16). At even higher pressures and temperatures, the reflectivity decreased, suggesting that hydrogen and helium began mixing again.

    The researchers calculated that hydrogen and helium would separate about 11,000 kilometers below the cloud tops of Jupiter, down to a depth of about 22,000 kilometers.

    The results could help scientists explain observations made by spacecraft Galileo (SN: 2/18/02) and Juno (SN: 3/7/18), such as the fact that Jupiter’s outer layers of atmosphere have less helium than expected. More

  • in

    China’s first Mars rover has landed and is sending its first pictures

    China’s first Mars rover is taking in the view of its new home. The Zhurong rover touched down on the Red Planet on May 14, and its first images reached Earth on May 19.

    Zhurong, named for an ancient Chinese god of fire, has been orbiting the Red Planet since February 10, when China’s Tianwen-1 spacecraft entered Martian orbit. The rover landed in a vast plain called Utopia Planitia — also where NASA’s Viking 2 lander touched down in 1976, although Viking 2’s site was much farther north (SN:  9/11/76).

    The orbiter and rover together mark China’s first Mars mission and make China only the second country to successfully land a rover there. China has previously landed two rovers on the moon, named Yutu and Yutu-2, with the Chang’e-3 and Chang’e-4 missions (SN: 1/3/19).

    [embedded content]
    The Tianwen-1 orbiter captured a video of the lander and rover separating from the orbiter before plunging into the Martian atmosphere.

    Unlike NASA’s Perseverance rover, which landed on Mars in February and beamed photos back almost immediately (SN: 2/17/21), Zhurong took a few days to send its first glimpses of the Martian surface back to Earth. That’s because the rover had to wait for the Tianwen-1 orbiter to move into a lower orbit to allow it to relay more data between Mars and Earth.

    This image was taken with Zhurong’s rear navigation camera. It shows the rover’s solar panels and antenna.CNSA

    The first images are from Zhurong’s hazard avoidance and navigation cameras. For now, the rover is still perched atop its landing platform. After several days looking around and checking out its instruments, Zhurong will roll down the lander’s ramps and onto the Martian soil, possibly on May 21 or 22, according to a report from China’s state-run Xinhua news agency after the landing.

    Zhurong will spend at least three months studying the geology at Utopia Planitia and searching for water ice beneath the surface. The rover carries a ground-penetrating radar that can help distinguish between rock and ice beneath the surface, similar to a technique used by the Yutu-2 rover on the moon (SN: 2/26/20).  It also carries an instrument to analyze surface chemistry.

    The Tianwen-1 orbiter will remain active for a full Martian year (about 687 Earth days), observing the ground from space with a high-resolution camera. More

  • in

    NASA’s Ingenuity helicopter’s mission with Perseverance has been extended

    The Ingenuity helicopter proved it could fly on Mars. Now it has loftier goals. Having passed all its original engineering tests, the tiny spacecraft will now begin a new job, supporting the Perseverance rover in its science mission.

    “It’s like Ingenuity is graduating,” said Ingenuity project manager MiMi Aung of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in a news briefing on April 30.

    The helicopter arrived at Mars with two main goals: demonstrate that flight was possible on the Red Planet and show that it could return critical flight data to Earth. Those were both achieved in Ingenuity’s first flight on April 19 and then surpassed as the helicopter flew farther, higher and faster on April 22 and April 25 (SN: 4/19/21).

    The original plan was for Ingenuity to take up to six flights total, then ground itself forever as Perseverance drove away to do science. That was partly because the Perseverance team expected to drive far from the rover’s landing site in search of rocks that might preserve signs of past Martian life (SN: 2/22/21).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “We thought we would be doing an intensive drive campaign in which the helicopter would not be able to keep up,” said Perseverance project scientist Ken Farley of Caltech in the briefing. “But based on the rocks we have seen in the area, we really wish to spend a considerable amount of time where we are.”

    Ingenuity has also been performing surprisingly well, Aung said. The rover and the helicopter might be able to communicate from more than a kilometer apart, giving them both more flexibility.

    Ingenuity took its fourth flight on April 30 to scout for a new launch pad. The fifth flight, to be scheduled after the team has examined the data, will be a one-way journey to that new home.

    After that, Ingenuity will switch into support mode. Up until now, the Perseverance team has generously supported the helicopter, Aung said. “The rover is primary going forward,” she said.

    The helicopter will have future flights in support mode. The team says Ingenuity will scout potential scientific observations and rover routes from the sky, make 3-D digital elevation maps and take a look at places a rover can’t go. “The lessons learned from that exercise will benefit future missions with aerial platforms tremendously,” Aung said.

    The team isn’t sure how the helicopter’s mission will end. Ingenuity was designed to last just 30 Martian days. The new support phase will extend its mission by another 30 days, unless something goes wrong before then. “We don’t know how many freeze and thaw cycles it can go through before something breaks,” said Ingenuity chief engineer Bob Balaram. More

  • in

    NASA’s Perseverance rover split CO2 to make breathable air on Mars

    NASA’s Perseverance rover just created a breath of fresh air on Mars. An experimental device on the rover split carbon dioxide molecules into their component parts, creating about 10 minutes’ worth of breathable oxygen. It was also enough oxygen to make tiny amounts of rocket fuel.

    The instrument, called MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), is about the size of a toaster (SN: 7/28/20). Its job is to break oxygen atoms off carbon dioxide, the primary component of Mars’ atmosphere. It’s like “an electrical tree,” says principal investigator Michael Hecht of MIT. “We breathe in CO2 and breathe out oxygen.”

    MOXIE flew to Mars with Perseverance, which arrived on the Red Planet on February 18 (SN: 2/22/21). On April 20, the instrument warmed up to about 800° Celsius and ran for long enough to produce five grams of oxygen. That’s not enough to breathe for very long. But the main reason to make oxygen on Mars isn’t for breathing, Hecht says. It’s for making fuel for the return journey to Earth.

    “When we burn anything, gas in the car or a log in the fireplace, most of what we’re burning is oxygen,” Hecht says. On Earth, we take all that oxygen for granted. “It’s free here. We don’t think about it.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Future astronauts will have to either bring oxygen with them or make it on Mars. A rocket powerful enough to lift a few astronauts off the Red Planet’s surface would need about 25 metric tons of oxygen — too much to pack for the journey.

    MOXIE is a prototype for the device astronauts could use to make rocket fuel in the future. When running at full power, the instrument can create about 10 grams of oxygen per hour. The instrument, powered by Perseverance, will run for about one Martian day at a time. A scaled-up version could run continuously for 26 months before astronauts arrive, Hecht says.

    MOXIE can’t run continuously because Perseverance needs to divert its power back to its other instruments to continue its science mission of searching for signs of past life on Mars (SN: 1/10/18). MOXIE will get a chance to run at least nine more times over the next Martian year (about two Earth years).

    The success of the technology could set the stage for a permanent research station on Mars, like the McMurdo station in Antarctica, something Hecht would like to someday see. “That’s not something I expect to see in my lifetime, but something I expect to see progress towards in my lifetime,” he says. “MOXIE brings it closer by a decade.” More