Scientists develop method to predict the spread of armed conflicts
Around the world, political violence increased by 27 percent last year, affecting 1.7 billion people. The numbers come from the Armed Conflict Location & Event Data Project (ACLED), which collects real-time data on conflict events worldwide.
Some armed conflicts occur between states, such as Russia’s invasion of Ukraine. There are, however, many more that take place within the borders of a single state. In Nigeria, violence, particularly from Boko Haram, has escalated in the past few years. In Somalia, populations remain at risk amidst conflict and attacks perpetrated by armed groups, particularly Al-Shabaab.
To address the challenge of understanding how violent events spread, a team at the Complexity Science Hub (CSH) created a mathematical method that transforms raw data on armed conflicts into meaningful clusters by detecting causal links.
“Our main question was: what is a conflict? How can we define it?,” says CSH scientist Niraj Kushwaha, one of the coauthors of the study published in the latest issue of PNAS Nexus. “It was important for us to find a quantitative and bias-free way to see if there were any correlations between different violent events, just by looking at the data.”
Inspiration
“We often tell multiple narratives about a single conflict, which depend on whether we zoom in on it as an example of local tension or zoom out from it and consider it as part of a geopolitical plot; these are not necessarily incompatible,” explains coauthor Eddie Lee, a postdoctoral fellow at CSH. “Our technique allows us to titrate between them and fill out a multiscale portrait of conflict.”
In order to investigate the many scales of political violence, the researchers turned to physics and biophysics for inspiration. The approach they developed is inspired by studies of stress propagation in collapsing materials and of neural cascades in the brain. More