More stories

  • in

    Atom-thin walls could smash size, memory barriers in next-gen devices

    For all of the unparalleled, parallel-processing, still-indistinguishable-from-magic wizardry packed into the three pounds of the adult human brain, it obeys the same rule as the other living tissue it controls: Oxygen is a must.
    So it was with a touch of irony that Evgeny Tsymbal offered his explanation for a technological wonder — movable, data-covered walls mere atoms wide — that may eventually help computers behave more like a brain.
    “There was unambiguous evidence that oxygen vacancies are responsible for this,” said Tsymbal, George Holmes University Professor of physics and astronomy at the University of Nebraska-Lincoln.
    In partnership with colleagues in China and Singapore, Tsymbal and a few Husker alumni have demonstrated how to construct, control and explain the oxygen-deprived walls of a nanoscopically thin material suited to next-gen electronics.
    Unlike most digital data-writing and -reading techniques, which speak only the binary of 1s and 0s, these walls can talk in several electronic dialects that could allow the devices housing them to store even more data. Like synapses in the brain, the passage of electrical spikes sent via the walls can depend on which signals have passed through before, lending them an adaptability and energy-efficiency more akin to human memory. And much as brains maintain memories even when their users sleep, the walls can retain their data states even if their devices turn off — a precursor to electronics that power back on with the speed and simplicity of a light.
    The team investigated the barrier-smashing walls in a nanomaterial, named bismuth ferrite, that can be sliced thousands of times thinner than a human hair. Bismuth ferrite also boasts a rare quality known as ferroelectricity: The polarization, or separation, of its positive and negative electric charges can be flipped by applying just a pinch of voltage, writing a 1 or 0 in the process. Contrary to conventional DRAM, a dynamic random-access memory that needs to be refreshed every few milliseconds, that 1 or 0 remains even when the voltage is removed, granting it the equivalent of long-term memory that DRAM lacks.

    Usually, that polarization is read as a 1 or 0, and flipped to rewrite it as a 0 or 1, in a region of material called a domain. Two oppositely polarized domains meet to form a wall, which occupies just a fraction of the space dedicated to the domains themselves. The few-atom thickness of those walls, and the unusual properties that sometimes emerge in or around them, have cast them as prime suspects in the search for new ways to squeeze ever-more functionality and storage into shrinking devices.
    Still, walls that run parallel to the surface of a ferroelectric material — and net an electric charge usable in data processing and storage — have proven difficult to find, let alone regulate or create. But about four years ago, Tsymbal began talking with Jingsheng Chen from the National University of Singapore and He Tian from China’s Zhejiang University. At the time, Tian and some colleagues were pioneering a technique that allowed them to apply voltage on an atomic scale, even as they recorded atom-by-atom displacements and dynamics in real time.
    Ultimately, the team found that applying just 1.5 volts to a bismuth ferrite film yielded a domain wall parallel to the material’s surface — one with a specific resistance to electricity whose value could be read as a data state. When voltage was withdrawn, the wall, and its data state, remained.
    When the team cranked up the voltage, the domain wall began migrating down the material, a behavior seen in other ferroelectrics. Whereas the walls in those other materials had then propagated perpendicular to the surface, though, this one remained parallel. And unlike any of its predecessors, the wall adopted a glacial pace, migrating just one atomic layer at a time. Its position, in turn, corresponded with changes in its electrical resistance, which dropped in three distinct steps — three more readable data states — that emerged between the application of 8 and 10 volts.
    The researchers had nailed down a few W’s — the what, the where, the when — critical to eventually employing the phenomenon in electronic devices. But they were still missing one. Tsymbal, as it happened, was among the few people qualified to address it.

    “There was a puzzle,” Tsymbal said. “Why does it happen? And this is where theory helped.”
    Most domain walls are electrically neutral, possessing neither a positive nor a negative charge. That’s with good reason: A neutral wall requires little energy to maintain its electric state, effectively making it the default. The domain wall the team identified in the ultra-thin bismuth ferrite, by contrast, possessed a substantial charge. And that, Tsymbal knew, should have kept it from stabilizing and persisting. Yet somehow, it was managing to do just that, seeming to flout the rules of condensed-matter physics.
    There had to be an explanation. In his prior research, Tsymbal and colleagues had found that the departure of negatively charged oxygen atoms, and the positively charged vacancies they left in their wake, could impede a technologically useful outcome. This time, Tsymbal’s theory-backed calculations suggested the opposite — that the positively charged vacancies were compensating for other negative charges accumulating at the wall, essentially fortifying it in the process.
    Experimental measurements from the team would later show that the distribution of charges in the material lined up almost exactly with the location of the domain wall, exactly as the calculations had predicted. If oxygen vacancies turn up in other ferroelectric playgrounds, Tsymbal said, they could prove vital to better understanding and engineering devices that incorporate the prized class of materials.
    “From my perspective, that was the most exciting,” said Tsymbal, who undertook the research with support from the university’s quantum-focused EQUATE project. “This links ferroelectricity with electrochemistry. We have some kind of electrochemical processes — namely, the motion of oxygen vacancies — which basically control the motion of these domain walls.
    “I think that this mechanism is very important, because what most people are doing — including us, theoretically — is looking at pristine materials, where polarization switches up and down, and studying what happens with the resistance. All the experimental interpretations of this behavior were based on this simple picture of polarization. But here, it’s not only the polarization. It involves some chemical processes inside of it.”
    The team detailed its findings in the journal Nature. Tsymbal, Tian and Chen authored the study with Ze Zhang, Zhongran Liu, Han Wang, Hongyang Yu, Yuxuan Wang, Siyuan Hong, Meng Zhang, Zhaohui Ren and Yanwu Xie, as well as Husker alumni Ming Li, Lingling Tao and Tula Paudel. More

  • in

    Chiral phonons create spin current without needing magnetic materials

    Researchers from North Carolina State University and the University of North Carolina at Chapel Hill used chiral phonons to convert wasted heat into spin information — without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to power grids.
    Spintronic devices are electronic devices that harness the spin of an electron, rather than its charge, to create current used for data storage, communication, and computing. Spin caloritronic devices — so-called because they utilize thermal energy to create spin current — are promising because they can convert waste heat into spin information, which makes them extremely energy efficient. However, current spin caloritronic devices must contain magnetic materials in order to create and control the electron’s spin.
    “We used chiral phonons to create a spin current at room temperature without needing magnetic materials,” says Dali Sun, associate professor of physics and member of the Organic and Carbon Electronics Lab (ORaCEL) at North Carolina State University.
    “By applying a thermal gradient to a material that contains chiral phonons, you can direct their angular momentum and create and control spin current.” says Jun Liu, associate professor of mechanical and aerospace engineering at NC State and ORaCEL member.
    Both Liu and Sun are co-corresponding authors of the research, which appears in Nature Materials.
    Chiral phonons are groups of atoms that move in a circular direction when excited by an energy source — in this case, heat. As the phonons move through a material, they propagate that circular motion, or angular momentum, through it. The angular momentum serves as the source of spin, and the chirality dictates the direction of the spin.

    “Chiral materials are materials that cannot be superimposed on their mirror image,” Sun says. “Think of your right and left hands — they are chiral. You can’t put a left-handed glove on a right hand, or vice versa. This ‘handedness’ is what allows us to control the spin direction, which is important if you want to use these devices for memory storage.”
    The researchers demonstrated chiral phonon-generated spin currents in a two-dimensional layered hybrid organic-inorganic perovskite by using a thermal gradient to introduce heat to the system.
    “A gradient is needed because temperature difference in the material — from hot to cold — drives the motion of the chiral phonons through it,” says Liu. “The thermal gradient also allows us to use captured waste heat to generate spin current.”
    The researchers hope that the work will lead to spintronic devices that are cheaper to produce and can be used in a wider variety of applications.
    “Eliminating the need for magnetism in these devices means you’re opening the door wide in terms of access to potential materials,” Liu says. “And that also means increased cost-effectiveness.”
    “Using waste heat rather than electric signals to generate spin current makes the system energy efficient — and the devices can operate at room temperature,” Sun says. “This could lead to a much wider variety of spintronic devices than we currently have available.”
    The research was supported by the National Science Foundation and the U.S. Department of Energy. Wei You, professor of chemistry at the University of North Carolina at Chapel Hill and a member of ORaCEL, is also a co-corresponding author of the study. More

  • in

    Climate ‘teleconnections’ may link droughts and fires across continents

    Large-scale climate patterns that can impact weather across thousands of kilometers may have a hand in synchronizing multicontinental droughts and stoking wildfires around the world, two new studies find.

    These profound patterns, known as climate teleconnections, typically occur as recurring phases that can last from weeks to years. “They are a kind of complex butterfly effect, in that things that are occurring in one place have many derivatives very far away,” says Sergio de Miguel, an ecosystem scientist at Spain’s University of Lleida and the Joint Research Unit CTFC-Agrotecnio in Solsona, Spain.

    Science News headlines, in your inbox

    Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.

    Thank you for signing up!

    There was a problem signing you up.

    Major droughts arise around the same time at drought hot spots around the world, and the world’s major climate teleconnections may be behind the synchronization, researchers report in one study. What’s more, these profound patterns may also regulate the scorching of more than half of the area burned on Earth each year, de Miguel and colleagues report in the other study.

    The research could help countries around the world forecast and collaborate to deal with widespread drought and fires, researchers say.

    The El Niño-Southern Oscillation, or ENSO, is perhaps the most well-known climate teleconnection (SN: 8/21/19). ENSO entails phases during which weakened trade winds cause warm surface waters to amass in the eastern tropical Pacific Ocean, known as El Niño, and opposite phases of cooler tropical waters called La Niña.

    These phases influence wind, temperature and precipitation patterns around the world, says climate scientist Samantha Stevenson of the University of California, Santa Barbara, who was not involved in either study. “If you change the temperature of the ocean in the tropical Pacific or the Atlantic … that energy has to go someplace,” she explains. For instance, a 1982 El Niño caused severe droughts in Indonesia and Australia and deluges and floods in parts of the United States.

    Past research has predicted that human-caused climate change will provoke more intense droughts and worsen wildfire seasons in many regions (SN: 3/4/20). But few studies have investigated how shorter-lived climate variations — teleconnections — influence these events on a global scale. Such work could help countries improve forecasting efforts and share resources, says climate scientist Ashok Mishra of Clemson University in South Carolina.

    In one of the new studies, Mishra and his colleagues tapped data on drought conditions from 1901 to 2018. They used a computer to simulate the world’s drought history as a network of drought events, drawing connections between events that occurred within three months of each other.

    The researchers identified major drought hot spots across the globe — places in which droughts tended to appear simultaneously or within just a few months. These hot spots included the western and midwestern United States, the Amazon, the eastern slope of the Andes, South Africa, the Arabian deserts, southern Europe and Scandinavia. 

    Subscribe to Science News

    Get great science journalism, from the most trusted source, delivered to your doorstep.

    “When you get a drought in one, you get a drought in others,” says climate scientist Ben Kravitz of Indiana University Bloomington, who was not involved in the study. “If that’s happening all at once, it can affect things like global trade, [distribution of humanitarian] aid, pollution and numerous other factors.”

    A subsequent analysis of sea surface temperatures and precipitation patterns suggested that major climate teleconnections were behind the synchronization of droughts on separate continents, the researchers report January 10 in Nature Communications. El Niño appeared to be the main driver of simultaneous droughts spanning parts of South America, Africa and Australia. ENSO is known to exert a widespread influence on precipitation patterns (SN: 4/16/20). So that finding is “a good validation of the method,” Kravitz says. “We would expect that to appear.”

    In the second study, published January 27 in Nature Communications, de Miguel and his colleagues investigated how climate teleconnections influence the amount of land burned around the world. Researchers knew that the climate patterns can influence the frequency and intensity of wildfires. In the new study, the researchers compared satellite data on global burned area from 1982 to 2018 with data on the strength and phase of the globe’s major climate teleconnections.

    Variations in the yearly pattern of burned area strongly aligned with the phases and range of climate teleconnections. In all, these climate patterns regulate about 53 percent of the land burned worldwide each year, the team found. According to de Miguel, teleconnections directly influence the growth of vegetation and other conditions such as aridity, soil moisture and temperature that prime landscapes for fires.

    The Tropical North Atlantic teleconnection, a pattern of shifting sea surface temperatures just north of the equator in the Atlantic Ocean, was associated with about one-quarter of the global burned area — making it the most powerful driver of global burning, especially in the Northern Hemisphere.

    These researchers are showing that wildfire scars around the world are connected to these climate teleconnections, and that’s very useful, Stevenson says. “Studies like this can help us prepare how we might go about constructing larger scale international plans to deal with events that affect multiple places at once.” More