Human brain organoids implanted into mouse cortex respond to visual stimuli for first time
A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals’ cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
The team, led by Duygu Kuzum, a faculty member in the University of California San Diego Department of Electrical and Computer Engineering, details their findings in the Dec. 26 issue of the journal Nature Communications. Kuzum’s team collaborated with researchers from Anna Devor’s lab at Boston University; Alysson R. Muotri’s lab at UC San Diego; and Fred H. Gage’s lab at the Salk Institute.
Human cortical organoids are derived from human induced pluripotent stem cells, which are usually derived themselves from skin cells. These brain organoids have recently emerged as promising models to study the development of the human brain, as well as a range of neurological conditions.
But until now, no research team had been able to demonstrate that human brain organoids implanted in the mouse cortex were able to share the same functional properties and react to stimuli in the same way. This is because the technologies used to record brain function are limited, and are generally unable to record activity that lasts just a few milliseconds.
The UC San Diego-led team was able to solve this problem by developing experiments that combine microelectrode arrays made from transparent graphene, and two-photon imaging, a microscopy technique that can image living tissue up to one millimeter in thickness.
“No other study has been able to record optically and electrically at the same time,” said Madison Wilson, the paper’s first author and a Ph.D. student in Kuzum’s research group at UC San Diego. “Our experiments reveal that visual stimuli evoke electrophysiological responses in the organoids, matching the responses from the surrounding cortex.”
The researchers hope that this combination of innovative neural recording technologies to study organoids will serve as a unique platform to comprehensively evaluate organoids as models for brain development and disease, and investigate their use as neural prosthetics to restore function to lost, degenerated or damaged brain regions. More