Shrinking hydrogels enlarge nanofabrication options
Carnegie Mellon University’s Yongxin (Leon) Zhao and the Chinese University of Hong Kong’s Shih-Chi Chen have a big idea for manufacturing nanodevices.
Zhao’s Biophotonics Lab develops novel techniques to study biological and pathological processes in cells and tissues. Through a process called expansion microscopy, the lab works to advance techniques to proportionally enlarge microscopic samples embedded in a hydrogel, allowing researchers to be able to view fine details without upgrading their microscopes.
In 2019, an inspiring conversation with Shih-Chi Chen, who was visiting Carnegie Mellon as an invited speaker and is a professor at the Chinese University of Hong Kong’s Department of Mechanical and Automation Engineering, sparked a collaboration between the two researchers. They thought they could use their combined expertise to find novel solutions for the long-standing challenge in microfabrication: developing ways to reduce the size of printable nanodevices to as small as 10s of nanometers or several atoms thick.
Their solution is the opposite of expansion microscopy: create the 3D pattern of a material in hydrogel and shrink it for nanoscale resolution.
“Shih-Chi is known for inventing the ultrafast two-photon lithography system,” said Zhao, the Eberly Family Career Development Associate Professor of Biological Sciences. “We met during his visit to Carnegie Mellon and decided to combine our techniques and expertise to pursue this radical idea.”
The results of the collaboration open new doors for designing sophisticated nanodevices and are published in the journal Science. More