New X-ray imaging technique to study the transient phases of quantum materials
The use of light to produce transient phases in quantum materials is fast becoming a novel way to engineer new properties in them, such as the generation of superconductivity or nanoscale topological defects. However, visualizing the growth of a new phase in a solid is not easy, due in-part to the wide range of spatial and time scales involved in the process.
Although in the last two decades scientists have explained light-induced phase transitions by invoking nanoscale dynamics, real space images have not yet been produced and, thus, no one has seen them.
In the new study published in Nature Physics, ICFO researchers Allan S. Johnson and Daniel Pérez-Salinas, led by former ICFO Prof. Simon Wall, in collaboration with colleagues from Aarhus University, Sogang University, Vanderbilt University, the Max Born Institute, the Diamond Light Source, ALBA Synchrotron, Utrecht University, and the Pohang Accelerator Laboratory, have pioneered a new imaging method that allows the capture of the light-induced phase transition in vanadium oxide (VO2) with high spatial and temporal resolution.
The new technique implemented by the researchers is based on coherent X-ray hyperspectral imaging at a free electron laser, which has allowed them to visualize and better understand, at the nanoscale, the insulator-to-metal phase transition in this very well-known quantum material.
The crystal VO2 has been widely used in to study light-induced phase transitions. It was the first material to have its solid-solid transition tracked by time-resolved X-ray diffraction and its electronic nature was studied by using for the first time ultrafast X-ray absorption techniques. At room temperature, VO2 is in the insulating phase. However, if light is applied to the material, it is possible to break the dimers of the vanadium ion pairs and drive the transition from an insulating to a metallic phase.
In their experiment, the authors of the study prepared thin samples of VO2 with a gold mask to define the field of view. Then, the samples were taken to the X-ray Free Electron Laser facility at the Pohang Accelerator Laboratory, where an optical laser pulse induced the transient phase, before being probed by an ultrafast X-ray laser pulse. A camera captured the scattered X-rays, and the coherent scattering patterns were converted into images by using two different approaches: Fourier Transform Holography (FTH) and Coherent Diffractive Imaging (CDI). Images were taken at a range of time delays and X-ray wavelengths to build up a movie of the process with 150 femtosecond time resolution and 50 nm spatial resolution, but also with full hyperspectral information. More