More stories

  • in

    The interplay between epidemics, prevention information, and mass media

    When an epidemic strikes, more than just infections spread. As cases mount, information about the disease, how to spot it, and how to prevent it propagates rapidly among people in affected areas as well. Relatively little is known, however, about the interplay between the course of epidemics and this diffusion of information to the public.
    A pair of researchers developed a model that examines epidemics through two lenses — the spread of disease and the spread of information — to understand how reliable information can be better disseminated during these events. In Chaos, by AIP Publishing, Xifen Wu and Haibo Bao report their two-layered model can predict the effects of mass media and infection prevention information on the epidemic threshold.
    “In recent years, epidemics spread all over the world together with preventive information. And the mass media affected the people’s attitudes toward epidemic prevention,” said Bao. “Our aim is to find how these factors influence the epidemic propagation and provide certain guidance for epidemic prevention and control.”
    To tackle their question, the researchers’ model compares the interactions between two layers of information. The first is the transmission of the disease itself, propagated through physical contact between people. The second occupies the information space of social networks, where different voices are sharing the do’s and don’ts of infection prevention, called positive and negative information respectively.
    The model provides a set of equations that can be used to calculate the epidemic threshold using a technique called microscopic Markov chains.
    Central to this calculation is the time delay between becoming infected and recovering. The longer it takes for patients to recover from an infection, they found, the less likely a patient is cured, leading to a lower recovery rate and making it easier for a disease to break out.
    Disseminating effective prevention practices and using mass media, however, can increase the epidemic threshold, making it more difficult for the infection to spread. They simulate this by reducing the time delays related to recovery, which boosts recovery rates.
    “The major challenge in our work is how to analyze the impact of positive information, negative information, and the mass media on the recovery rate and epidemic prevalence at the same time,” Bao said. “What surprised us the most is that it is not always possible to improve the recovery rate by increasing the communication rate of mass media.”
    Bao hopes the work inspires others to use high-level mathematics to tackle such cross-disciplinary questions. They next look to analyze the impact of population mobility and vaccination.
    Story Source:
    Materials provided by American Institute of Physics. Note: Content may be edited for style and length. More

  • in

    Microlaser chip adds new dimensions to quantum communication

    Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.
    Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in Nature. The group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).
    Bits, Qubits and Qudits
    While non-quantum chips store, transmit and compute data using bits, state-of-the-art quantum devices use qubits. Bits can be 1s or 0s, while qubits are units of digital information capable of being both 1 and 0 at the same time. In quantum mechanics, this state of simultaneity is called “superposition.”
    A quantum bit in a state of superposition greater than two levels is called a qudit to signal these additional dimensions.
    “In classical communications,” says Feng, “a laser can emit a pulse coded as either 1 or 0. These pulses can easily be cloned by an interceptor looking to steal information and are therefore not very secure. In quantum communications with qubits, the pulse can have any superposition state between 1 and 0. Superposition makes it so a quantum pulse cannot be copied. Unlike algorithmic encryption, which blocks hackers using complex math, quantum cryptography is a physical system that keeps information secure.”
    Qubits, however, aren’t perfect. With only two levels of superposition, qubits have limited storage space and low tolerance for interference. More

  • in

    'Brain-like computing' at molecular level is possible

    A breakthrough discovery at University of Limerick in Ireland has revealed for the first time that unconventional brain-like computing at the tiniest scale of atoms and molecules is possible.
    Researchers at University of Limerick’s Bernal Institute worked with an international team of scientists to create a new type of organic material that learns from its past behaviour.
    The discovery of the ‘dynamic molecular switch’ that emulate synaptic behaviour is revealed in a new study in the international journal Nature Materials.
    The study was led by Damien Thompson, Professor of Molecular Modelling in UL’s Department of Physics and Director of SSPC, the UL-hosted Science Foundation Ireland Research Centre for Pharmaceuticals, together with Christian Nijhuis at the Centre for Molecules and Brain-Inspired Nano Systems in University of Twente and Enrique del Barco from University of Central Florida.
    Working during lockdowns, the team developed a two-nanometre thick layer of molecules, which is 50,000 times thinner than a strand of hair and remembers its history as electrons pass through it.
    Professor Thompson explained that the “switching probability and the values of the on/off states continually change in the molecular material, which provides a disruptive new alternative to conventional silicon-based digital switches that can only ever be either on or off.”
    The newly discovered dynamic organic switch displays all the mathematical logic functions necessary for deep learning, successfully emulating Pavlovian ‘call and response’ synaptic brain-like behaviour. More

  • in

    A possible game changer for next generation microelectronics

    Tiny magnetic whirlpools could transform memory storage in high performance computers.
    Magnets generate invisible fields that attract certain materials. A common example is fridge magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one — the language of computers.
    Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory want to replace the bar magnets with tiny magnetic vortices. As tiny as billionths of a meter, these vortices are called skyrmions, which form in certain magnetic materials. They could one day usher in a new generation of microelectronics for memory storage in high performance computers.
    “The bar magnets in computer memory are like shoelaces tied with a single knot; it takes almost no energy to undo them,” said Arthur McCray, a Northwestern University graduate student working in Argonne’s Materials Science Division (MSD). And any bar magnets malfunctioning due to some disruption will affect the others.
    “By contrast, skyrmions are like shoelaces tied with a double knot. No matter how hard you pull on a strand, the shoelaces remain tied.” The skyrmions are thus extremely stable to any disruption. Another important feature is that scientists can control their behavior by changing the temperature or applying an electric current.
    Scientists have much to learn about skyrmion behavior under different conditions. To study them, the Argonne-led team developed an artificial intelligence (AI) program that works with a high-power electron microscope at the Center for Nanoscale Materials (CNM), a DOE Office of Science user facility at Argonne. The microscope can visualize skyrmions in samples at very low temperatures. More

  • in

    Pollution mucks up the lungs’ immune defenses over time

    The lungs’ immune defenses can wane with age, leaving older adults more susceptible to lung damage and severe bouts of respiratory infections. New research reveals one reason why this might happen: Inhaled particulate matter from pollution gunks up the works over time, weakening the lungs’ immune system, researchers report online November 21 in Nature Medicine.

    Air pollution is a major cause of disease and early death worldwide and disproportionately impacts poor and marginalized communities (SN: 7/30/20). Particulate matter — a type of pollution emitted from vehicle exhaust, power plants, wildfires and other sources —  has been tied to health harms including respiratory, cardiovascular and neurological diseases (SN: 9/19/17).

    In the new study, researchers from Columbia University analyzed lung immune tissue from 84 organ donors, ranging in age from 11 to 93 years old. The donors were nonsmokers or had no history of heavy smoking. With age, the lungs’ lymph nodes — which filter foreign substances and contain immune cells — became loaded with particulate matter, turning them a deep onyx, the research team found.

    “If the [lymph nodes] build up with so much material, then they can’t do their job,” says Elizabeth Kovacs, a cell biologist who studies inflammation and injury at the University of Colorado Anschutz Medical Campus in Aurora.

    The lymph nodes are home to an array of immune cells, including macrophages. These cellular Pac-Mans gobble up pathogens and other debris, including the particulate matter. Filled with the pollutant, the macrophages’ production of cytokines, proteins the cells secrete to activate other immune cells, decreased. The cells also showed signs of having a diminished capacity for more gobbling.

    The new study indicates that older people have accumulated so much debris, “they may not be able to accumulate more,” impairing their ability to deal with inhaled material, says Kovacs, who was not involved in the research.

    Pollution “is an ongoing and growing threat to the health and livelihood of the world’s population,” the research team writes. Their work finds that threat includes “a chronic and ubiquitous impact” on respiratory immunity with age. More

  • in

    These devices use an electric field to scare sharks from fishing hooks

    A new gadget takes advantage of sharks’ sixth sense to send the fish scurrying away from deadly hooks.

    Sharks, rays and their relatives can detect tiny electric fields, thanks to bulbous organs concentrated near their heads called ampullae of Lorenzini. So researchers developed SharkGuard, a cylindrical device that attaches to fishing lines just above the hook and emits a pulsing, short-range electric field. The device successfully deters sharks and rays, probably by temporarily overwhelming their sensory system, the scientists report November 21 in Current Biology.

    While many people are afraid of sharks, the fear makes more sense the other way around; numerous shark species are at risk of extinction, largely due to human activities (SN: 11/10/22).

    One major problem facing sharks and rays is bycatch, where the creatures get accidentally snagged by fishermen targeting other fish like tuna, says David Shiffman, a marine biologist and faculty research associate at Arizona State University in Tempe.

    Whether sharks and rays would be repelled or attracted by the electric fields generated by SharkGuard devices was an open question. The animals use their extra sense when hunting to detect the small electrical fields given off by prey. So marine biologist Rob Enever of Fishtek Marine, a conservation engineering company in Dartington, England, and his colleagues sent out two fishing vessels in the summer of 2021 — both outfitted with some normal hooks and some hooks with SharkGuard — and had them fish for tuna.

    In short, the sharks wanted nothing to do with the SharkGuard gadgets. Video reveals blue sharks approaching a hook with SharkGuard and veering away with no apparent harm. When encountering an unadorned hook, sharks took the bait, becoming bycatch.

    [embedded content]
    Sharks and their relatives can detect electric fields using organs in the skin called ampullae of Lorenzini. So researchers tested whether attaching a SharkGuard device, which emits a pulse of electricity every two seconds, to a fishing line just above the hook could deter a shark. The results, showing a shark taking the bait of a normal hook but other sharks veering away from hooks with the device, could hold promise for preventing millions of sharks from becoming bycatch.

    Hooks with the electric repellant reduced catch rates of blue sharks (Prionace glauca) by 91 percent compared with standard hooks, dropping from an average of 6.1 blue sharks caught per 1,000 hooks to 0.5 sharks. And 71 percent fewer pelagic stingrays (Pteroplatytrygon violacea) were caught using SharkGuard hooks, going from seven captured rays per 1,000 hooks on average to two rays.

    A typical fishing boat like those used in the study has approximately 10,000 hooks. So a boat whose entire set of hooks were outfitted with SharkGuard would go from catching about 61 blue sharks to 5, and 70 pelagic rays to 20.

    From astronomy to zoology

    Subscribe to Science News to satisfy your omnivorous appetite for universal knowledge.

    When you scale those numbers up to the millions of sharks and rays that are accidentally caught in longline fisheries every year, Enever says, “you’re going to have massive recovery of these pelagic shark populations.”

    “It’s definitely a notable and significant effect,” says Shiffman, who was not involved with the study. “If [the devices] went into effect across the fishing fleet that interacts with blue sharks, it would certainly be good news for [them].”

    But that doesn’t mean that SharkGuard is ready to be rolled out. Tuna catch rates were unseasonably low across the board in this study, which made it impossible to determine yet whether tuna are also bothered by the device. If they are, it wouldn’t make sense for fishermen to use the device in its current form.

    The team is also working to make SharkGuard smaller, cheaper and as easy to manage as possible, so that fishermen can “fit and forget” it. For example, the current battery, which needs to be changed every couple of weeks, will be swapped for one that can be induction charged while the fishing line is not in use, “like a toothbrush, basically,” Enever says.

    Shiffman would like to see SharkGuard tested in different environments and on other types of sharks. “There are a lot of shark species that are caught as bycatch on these longlines,” he says.

    And while this invention seems effective so far, no technology will serve as a silver bullet for shark conservation. “Fixing this problem of bycatch is going to require a lot of different solutions working in concert,” Shiffman says.

    The need for solutions is urgent. “We’re at a situation now where many of our pelagic species are either critically endangered, endangered or vulnerable,” Enever says. But the new findings are “a real story of ocean optimism,” he says. They show that “there’s people out there … trying to resolve these things. There’s hope for the future.” More

  • in

    Artificial neural networks learn better when they spend time not learning at all

    Depending on age, humans need 7 to 13 hours of sleep per 24 hours. During this time, a lot happens: Heart rate, breathing and metabolism ebb and flow; hormone levels adjust; the body relaxes. Not so much in the brain.
    “The brain is very busy when we sleep, repeating what we have learned during the day,” said Maxim Bazhenov, PhD, professor of medicine and a sleep researcher at University of California San Diego School of Medicine. “Sleep helps reorganize memories and presents them in the most efficient way.”
    In previous published work, Bazhenov and colleagues have reported how sleep builds rational memory, the ability to remember arbitrary or indirect associations between objects, people or events, and protects against forgetting old memories.
    Artificial neural networks leverage the architecture of the human brain to improve numerous technologies and systems, from basic science and medicine to finance and social media. In some ways, they have achieved superhuman performance, such as computational speed, but they fail in one key aspect: When artificial neural networks learn sequentially, new information overwrites previous information, a phenomenon called catastrophic forgetting.
    “In contrast, the human brain learns continuously and incorporates new data into existing knowledge,” said Bazhenov, “and it typically learns best when new training is interleaved with periods of sleep for memory consolidation.”
    Writing in the November 18, 2022 issue of PLOS Computational Biology, senior author Bazhenov and colleagues discuss how biological models may help mitigate the threat of catastrophic forgetting in artificial neural networks, boosting their utility across a spectrum of research interests. More

  • in

    'Butterfly bot' is fastest swimming soft robot yet

    Inspired by the biomechanics of the manta ray, researchers at North Carolina State University have developed an energy-efficient soft robot that can swim more than four times faster than previous swimming soft robots. The robots are called “butterfly bots,” because their swimming motion resembles the way a person’s arms move when they are swimming the butterfly stroke.
    “To date, swimming soft robots have not been able to swim faster than one body length per second, but marine animals — such as manta rays — are able to swim much faster, and much more efficiently,” says Jie Yin, corresponding author of a paper on the work and an associate professor of mechanical and aerospace engineering at NC State. “We wanted to draw on the biomechanics of these animals to see if we could develop faster, more energy-efficient soft robots. The prototypes we’ve developed work exceptionally well.”
    The researchers developed two types of butterfly bots. One was built specifically for speed, and was able to reach average speeds of 3.74 body lengths per second. A second was designed to be highly maneuverable, capable of making sharp turns to the right or left. This maneuverable prototype was able to reach speeds of 1.7 body lengths per second.
    “Researchers who study aerodynamics and biomechanics use something called a Strouhal number to assess the energy efficiency of flying and swimming animals,” says Yinding Chi, first author of the paper and a recent Ph.D. graduate of NC State. “Peak propulsive efficiency occurs when an animal swims or flies with a Strouhal number of between 0.2 and 0.4. Both of our butterfly bots had Strouhal numbers in this range.”
    The butterfly bots derive their swimming power from their wings, which are “bistable,” meaning the wings have two stable states. The wing is similar to a snap hair clip. A hair clip is stable until you apply a certain amount of energy (by bending it). When the amount of energy reaches critical point, the hair clip snaps into a different shape — which is also stable.
    In the butterfly bots, the hair clip-inspired bistable wings are attached to a soft, silicone body. Users control the switch between the two stable states in the wings by pumping air into chambers inside the soft body. As those chambers inflate and deflate, the body bends up and down — forcing the wings to snap back and forth with it.
    “Most previous attempts to develop flapping robots have focused on using motors to provide power directly to the wings,” Yin says. “Our approach uses bistable wings that are passively driven by moving the central body. This is an important distinction, because it allows for a simplified design, which lowers the weight.”
    The faster butterfly bot has only one “drive unit” — the soft body — which controls both of its wings. This makes it very fast, but difficult to turn left or right. The maneuverable butterfly bot essentially has two drive units, which are connected side by side. This design allows users to manipulate the wings on both sides, or to “flap” only one wing, which is what enables it to make sharp turns.
    “This work is an exciting proof of concept, but it has limitations,” Yin says. “Most obviously, the current prototypes are tethered by slender tubing, which is what we use to pump air into the central bodies. We’re currently working to develop an untethered, autonomous version.”
    The paper, “Snapping for high-speed and high-efficient, butterfly stroke-like soft swimmer,” will be published Nov. 18 in the open-access journal Science Advances. The paper was co-authored by Yaoye Hong, a Ph.D. student at NC State; and by Yao Zhao and Yanbin Li, who are postdoctoral researchers at NC State. The work was done with support from the National Science Foundation under grants CMMI-2005374 and CMMI-2126072.
    Video of the butterfly bots can be found at https://youtu.be/Pi-2pPDWC1w.
    Story Source:
    Materials provided by North Carolina State University. Original written by Matt Shipman. Note: Content may be edited for style and length. More