More stories

  • in

    Physicists take self-assembly to new level by mimicking biology

    A team of physicists has created a new way to self-assemble particles — an advance that offers new promise for building complex and innovative materials at the microscopic level.
    Self-assembly, introduced in the early 2000s, gives scientists a means to “pre-program” particles, allowing for the building of materials without further human intervention — the microscopic equivalent of Ikea furniture that can assemble itself.
    The breakthrough, reported in the journal Nature, centers on emulsions — droplets of oil immersed in water — and their use in the self-assembly of foldamers, which are unique shapes that can be theoretically predicted from the sequence of droplet interactions.
    The self-assembly process borrows from the field of biology, mimicking the folding of proteins and RNA using colloids. In the Nature work, the researchers created tiny, oil-based droplets in water, possessing an array of DNA sequences that served as assembly “instructions.” These droplets first assemble into flexible chains and then sequentially collapse, or fold, via sticky DNA molecules. This folding yields a dozen types of foldamers, and further specificity could encode more than half of 600 possible geometric shapes.
    “Being able to pre-program colloidal architectures gives us the means to create materials with intricate and innovative properties,” explains Jasna Brujic, a professor in New York University’s Department of Physics and one of the researchers. “Our work shows how hundreds of self-assembled geometries can be uniquely created, offering new possibilities for the creation of the next generation of materials.”
    The research also included Angus McMullen, a postdoctoral fellow in NYU’s Department of Physics, as well as Maitane Muñoz Basagoiti and Zorana Zeravcic of ESPCI Paris.
    The scientists emphasize the counterintuitive, and pioneering, aspect of the method: Rather than requiring a large number of building blocks to encode precise shapes, its folding technique means only a few are necessary because each block can adopt a variety of forms.
    “Unlike a jigsaw puzzle, in which every piece is different, our process uses only two types of particles, which greatly reduces the variety of building blocks needed to encode a particular shape,” explains Brujic. “The innovation lies in using folding similar to the way that proteins do, but on a length scale 1,000 times bigger — about one-tenth the width of a strand of hair. These particles first bind together to make a chain, which then folds according to preprogrammed interactions that guide the chain through complex pathways into a unique geometry.”
    “The ability to obtain a lexicon of shapes opens the path to further assembly into larger scale materials, just as proteins hierarchically aggregate to build cellular compartments in biology,” she adds.
    Story Source:
    Materials provided by New York University. Note: Content may be edited for style and length. More

  • in

    Scalable and fully coupled quantum-inspired processor solves optimization problems

    Have you ever been faced with a problem where you had to find an optimal solution out of many possible options, such as finding the quickest route to a certain place, considering both distance and traffic? If so, the problem you were dealing with is what is formally known as a “combinatorial optimization problem.” While mathematically formulated, these problems are common in the real world and spring up across several fields, including logistics, network routing, machine learning, and materials science.
    However, large-scale combinatorial optimization problems are very computationally intensive to solve using standard computers, making researchers turn to other approaches. One such approach is based on the “Ising model,” which mathematically represents the magnetic orientation of atoms, or “spins,” in a ferromagnetic material. At high temperatures, these atomic spins are oriented randomly. But as the temperature decreases, the spins line up to reach the minimum energy state where the orientation of each spin depends on its neighbors. It turns out that this process, known as “annealing,” can be used to model combinatorial optimization problems such that the final state of the spins yields the optimal solution.
    Researchers have tried creating annealing processors that mimic the behavior of spins using quantum devices, and have attempted to develop semiconductor devices using large-scale integration (LSI) technology aiming to do the same. In particular, Professor Takayuki Kawahara’s research group at Tokyo University of Science (TUS) in Japan has been making important breakthroughs in this particular field.
    In 2020, Prof. Kawahara and his colleagues presented at the 2020 international conference, IEEE SAMI 2020, one of the first fully coupled (that is, accounting for all possible spin-spin interactions instead of interactions with only neighboring spins) LSI annealing processors, comprising 512 fully-connected spins. Their work appeared in the journal IEEE Transactions on Circuits and Systems I: Regular Papers. These systems are notoriously hard to implement and upscale owing to the sheer number of connections between spins that needs to be considered. While using multiple fully connected chips in parallel was a potential solution to the scalability problem, this made the required number of interconnections (wires) between chips prohibitively large.
    In a recent study published in Microprocessors and Microsystems, Prof. Kawahara and his colleague demonstrated a clever solution to this problem. They developed a new method in which the calculation of the system’s energy state is divided among multiple fully coupled chips first, forming an “array calculator.” A second type of chip, called “control chip,” then collects the results from the rest of the chips and computes the total energy, which is used to update the values of the simulated spins. “The advantage of our approach is that the amount of data transmitted between the chips is extremely small,” explains Prof. Kawahara. “Although its principle is simple, this method allows us to realize a scalable, fully connected LSI system for solving combinatorial optimization problems through simulated annealing.”
    The researchers successfully implemented their approach using commercial FPGA chips, which are widely used programmable semiconductor devices. They built a fully connected annealing system with 384 spins and used it to solve several optimization problems, including a 92-node graph coloring problem and a 384-node maximum cut problem. Most importantly, these proof-of-concept experiments showed that the proposed method brings true performance benefits. Compared with a standard modern CPU modeling the same annealing system, the FPGA implementation was 584 faster and 46 times more energy efficient when solving the maximum cut problem.
    Now, with this successful demonstration of the operating principle of their method in FPGA, the researchers plan to take it to the next level. “We wish to produce a custom-designed LSI chip to increase the capacity and greatly improve the performance and power efficiency of our method,” Prof. Kawahara remarks. “This will enable us to realize the performance required in the fields of material development and drug discovery, which involve very complex optimization problems.”
    Finally, Prof. Kawahara notes that he wishes to promote the implementation of their results to solve real problems in society. His group hopes to engage in joint research with companies and bring their approach to the core of semiconductor design technology, opening doors to the revival of semiconductors in Japan.
    Story Source:
    Materials provided by Tokyo University of Science. Note: Content may be edited for style and length. More

  • in

    Engineers discover new process for synthetic material growth, enabling soft robots that grow like plants

    An interdisciplinary team of University of Minnesota Twin Cities scientists and engineers has developed a first-of-its-kind, plant-inspired extrusion process that enables synthetic material growth. The new approach will allow researchers to build better soft robots that can navigate hard-to-reach places, complicated terrain, and potentially areas within the human body.
    The paper is published in the Proceedings of the National Academy of Sciences (PNAS).
    “This is the first time these concepts have been fundamentally demonstrated,” said Chris Ellison, a lead author of the paper and professor in the University of Minnesota Twin Cities Department of Chemical Engineering and Materials Science. “Developing new ways of manufacturing are paramount for the competitiveness of our country and for bringing new products to people. On the robotic side, robots are being used more and more in dangerous, remote environments, and these are the kinds of areas where this work could have an impact.”
    Soft robotics is an emerging field where robots are made of soft, pliable materials as opposed to rigid ones. Soft growing robots can create new material and “grow” as they move. These machines could be used for operations in remote areas where humans can’t go, such as inspecting or installing tubes underground or navigating inside the human body for biomedical applications.
    Current soft growing robots drag a trail of solid material behind them and can use heat and/or pressure to transform that material into a more permanent structure, much like how a 3D printer is fed solid filament to produce its shaped product. However, the trail of solid material gets more difficult to pull around bends and turns, making it hard for the robots to navigate terrain with obstacles or winding paths.
    The University of Minnesota team solved this problem by developing a new means of extrusion, a process where material is pushed through an opening to create a specific shape. Using this new process allows the robot to create its synthetic material from a liquid instead of a solid. More

  • in

    As few as 1 in 5 COVID cases may have been counted worldwide, mathematical models suggest

    Mathematical models indicate that as few as one in five cases of COVID-19 which occurred during the first 29 months of the pandemic are accounted for in the half billion cases officially reported.
    The World Health Organization reported 513,955,910 cases from Jan. 1, 2020 to May 6, 2022 and 6,190,349 deaths, numbers which already moved COVID-19 to a top killer in some countries, including the United States, just behind heart disease and cancer, according to the Centers for Disease Control and Prevention.
    Still mathematical models indicate overall underreporting of cases ranging from 1 in 1.2 to 1 in 4.7, investigators report in the journal Current Science. That underreporting translates to global pandemic estimates between 600 million and 2.4 billion cases.
    “We all acknowledge a huge impact on us as individuals, a nation and the world, but the true number of cases is very likely much higher than we realize,” says Dr. Arni S.R. Srinivasa Rao, director of the Laboratory for Theory and Mathematical Modeling in the Division of Infectious Diseases at the Medical College of Georgia. “We are trying to understand the extent of underreported cases.”
    The wide range of estimated cases generated by their models indicate the problems with accuracy of reported numbers, which include data tampering, the inability to conduct accurate case tracking and the lack of uniformity in how cases are reported, write Rao and his colleagues Dr. Steven G. Krantz, professor of mathematics at Washington University in St. Louis Missouri and Dr. David A. Swanson, Edward A. Dickson Emeritus Professor in the Department of Sociology at the University of California, Riverside.
    A dearth of information and inconsistency in reporting cases has been a major problem with getting a true picture of the impact of the pandemic, Rao says.
    Mathematical models use whatever information is available as well as relevant factors like global transmission rates and the number of people in the world, including the average population over the 29-month timeframe. That average, referred to as the effective population, better accounts for those who were born and died for any reason and so provides a more realistic number of the people out there who could potentially be infected, Rao says.
    “You have to know the true burden on patients and their families, on hospitals and caregivers, on the economy and the government,” Rao says. More accurate numbers also help in assessing indirect implications like the underdiagnosis of potentially long-term neurological and mental disorders that are now known to be directly associated with infection, he says.
    The mathematics experts had published similar model-based estimates for eight countries earlier in the pandemic in 2020, to provide more perspective on what they said then was clear underreporting. Their modeling predicted countries like Italy, despite their diligence in reporting, were likely capturing 1 in 4 actual cases while in China, where population numbers are tremendous, they calculated a huge range of potential underreporting, from 1 in 149 to 1 in 1,104 cases.
    Other contributors to underreporting include the reality that everyone who has gotten COVID-19 has not been tested. Also, a significant percentage of people, even vaccinated and boosted individuals, are getting infected more than once, and may only go to the doctor for PCR resting the first time and potentially use at home tests or even no test for subsequent illnesses. For example, a recent report in JAMA on reinfection rates in Iceland during the first 74 days of the Omicron variant wave there indicates, based on PCR testing, that reinfection rates were at 10.9% — a high of 15.1% among those 18-29-year-olds — for those who received two or more doses of a vaccine.
    The number of fully vaccinated individuals globally reached a reported 5.1 billion by the end of their 29-month study timeframe.
    The CDC was reporting downward trends in new cases, hospitalizations and deaths in the United States from August to September. More

  • in

    New report offers blueprint for regulation of facial recognition technology

    A new report from the University of Technology Sydney (UTS) Human Technology Institute outlines a model law for facial recognition technology to protect against harmful use of this technology, but also foster innovation for public benefit.
    Australian law was not drafted with widespread use of facial recognition in mind. Led by UTS Industry Professors Edward Santow and Nicholas Davis, the report recommends reform to modernise Australian law, especially to address threats to privacy and other human rights.
    Facial recognition and other remote biometric technologies have grown exponentially in recent years, raising concerns about privacy, mass surveillance and unfairness experienced, especially by people of colour and women, when the technology makes mistakes.
    In June 2022, an investigation by consumer advocacy group CHOICE revealed that several large Australian retailers were using facial recognition to identify customers entering their stores, leading to considerable community alarm and calls for improved regulation. There have also been widespread calls for reform of facial recognition law — in Australia and internationally.
    This new report responds to those calls. It recognises that our faces are special, in the sense that humans rely heavily on each other’s faces to identify and interact. This reliance leaves us particularly vulnerable to human rights restrictions when this technology is misused or overused.
    “When facial recognition applications are designed and regulated well, there can be real benefits, helping to identify people efficiently and at scale. The technology is widely used by people who are blind or have a vision impairment, making the world more accessible for those groups,” said Professor Santow, the former Australian Human Rights Commissioner and now Co-Director of the Human Technology Institute. More

  • in

    Quantum technology reaches unprecedented control over captured light

    Researchers in quantum technology at Chalmers University of Technology have succeeded in developing a technique to control quantum states of light in a three-dimensional cavity. In addition to creating previously known states, the researchers are the first ever to demonstrate the long-sought cubic phase state. The breakthrough is an important step towards efficient error correction in quantum computers.
    “We have shown that our technology is on par with the best in the world,” says Simone Gasparinetti, who is head of a research group in experimental quantum physics at Chalmers and one of the study’s senior authors.
    Just as a conventional computer is based on bits that can take the value 0 or 1, the most common method of building a quantum computer uses a similar approach. Quantum mechanical systems with two different quantum states, known as quantum bits (qubits), are used as building blocks. One of the quantum states is assigned the value 0 and the other the value 1. However, on account of the quantum mechanical state of superposition, qubits can assume both states 0 and 1 simultaneously, allowing a quantum computer to process huge volumes of data with the possibility of solving problems far beyond the reach of today’s supercomputers.
    First time ever for cubic phase state
    A major obstacle towards the realisation of a practically useful quantum computer is that the quantum systems used to encode the information are prone to noise and interference, which causes errors. Correcting these errors is a key challenge in the development of quantum computers. A promising approach is to replace qubits with resonators — quantum systems which, instead of having just two defined states, have a very large number of them. These states may be compared to a guitar string, which can vibrate in many different ways. The method is called continuous-variable quantum computing and makes it possible to encode the values 1 and 0 in several quantum mechanical states of a resonator. However, controlling the states of a resonator is a challenge with which quantum researchers all over the world are grappling. And the results from Chalmers provide a way of doing so. The technique developed at Chalmers allows researchers to generate virtually all previously demonstrated quantum states of light, such as for example Schrödinger’s cat or Gottesman-Kitaev-Preskill (GKP)states, and the cubic phase state, a state previously described only in theory.
    “The cubic phase state is something that many quantum researchers have been trying to create in practice for twenty years. The fact that we have now managed to do this for the first time is a demonstration of how well our technique works, but the most important advance is that there are so many states of varying complexity and we have found a technique that can create any of them,” says Marina Kudra, a doctoral student at the Department of Microtechnology and Nanoscience and the study’s lead author. More

  • in

    ‘Fen, Bog & Swamp’ reminds readers why peatlands matter

    Fen, Bog & SwampAnnie ProulxSimon & Schuster, $26.99

    A recent TV ad features three guys lost in the woods, debating whether they should’ve taken a turn at a pond, which one guy argues is a marsh. “Let’s not pretend you know what a marsh is,” the other snaps. “Could be a bog,” offers the third.

    It’s an exchange that probably wouldn’t surprise novelist Annie Proulx. While the various types of peatlands — wetlands rich in partially decayed material called peat — do blend together, I can’t help but think, after reading her latest book, that a historical distaste and underappreciation of wetlands in Western society has led to the average person’s confusion over basic peatland vocabulary.

    In Fen, Bog & Swamp: A Short History of Peatland Destruction and Its Role in the Climate Crisis, Proulx seeks to fill the gaps. She details three types of peatland: fens, which are fed by streams and rivers; bogs, fed by rainwater; and swamps, distinguishable by their trees and shrubs. While all three ecosystems are found around most of the world, Proulx focuses primarily on northwestern Europe and North America, where the last few centuries of modern agriculture led to a huge demand for dry land. Wet, muddy and smelly, wetlands were a nightmare for farmers and would-be developers. Since the 1600s, U.S. settlers have drained more than half of the country’s wetlands; just 1 percent of British fens remains today.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Only recently have the consequences of these losses become clear. “We are now in the embarrassing position of having to relearn the importance of these strange places,” Proulx writes. For one, peatlands have great ecological value, supporting a variety of wildlife. They also sequester huge amounts of carbon dioxide, and some peatlands prevent shoreline erosion, while buffering land from storm surges (SN: 3/17/18, p. 20). But the book doesn’t spend too much time on nitty-gritty ecology. Instead, Proulx investigates these environments in the context of their relationship with people.

    Known for her fiction, Proulx, who penned The Shipping News and “Brokeback Mountain,” draws on historical accounts, literature and archaeological digs to imagine places lost to time. She challenges the notion that wetlands are purely unpleasant or disturbing — think Shrek’s swamp, where only an ogre would want to live, or the Swamps of Sadness in The Neverending Story that swallow up Atreyu’s horse.

    Proulx jumps back as far as 20,000 years ago to the bottom of the North Sea, which at the time was a hilly swath called Doggerland. When sea levels rose in the seventh century B.C., people there learned to thrive on the region’s developing fens, hunting for fish and eels. In Ireland, “bog bodies” — many thought to be human sacrifices — have been preserved in the peat for thousands of years; Proulx imagines torchlit ceremonies where people were offered to the mud, a connection to the natural world that is hard for many people to comprehend today. These spaces were integrated into the local cultures, from Renaissance paintings of wetlands to British lingo such as didder (the way a bog quivers when stepped on). Proulx also reflects on her own childhood memories — wandering through wetlands in Connecticut, a swamp in Vermont — and describes how she, like writer Henry David Thoreau, finds beauty in these places. “It is … possible to love a swamp,” she says.

    Fens, bogs and swamps are technically distinct, but they’re also fluid; one wetland may transition into another depending on its water source. This same fluidity is reflected in the book, where Proulx flits from one wetland to another, from one part of the world to another, from one millennium to another. At times didactic and meandering, Proulx will veer off to discuss humankind’s destructive tendency not just in wetlands, but nature in general, broadly rehashing aspects of the climate crisis that most readers interested in the environment are probably already familiar with. I was most enthralled — and heartbroken — by the stories I had never heard before: of “Yde Girl,” a redheaded teenager sacrificed to a bog; the zombie fires in Arctic peatlands that burn underground; and the ivory-billed woodpecker, a bird missing from southern U.S. swamps for almost a century.

    Buy Fen, Bog & Swamp from Bookshop.org. Science News is a Bookshop.org affiliate and will earn a commission on purchases made from links in this article. More

  • in

    Smartphones promise satisfaction and meaning, deliver only more searching, study finds

    Smartphone users will be disappointed if they expect their devices and social media to fill their need for purpose and meaning. In fact, it will probably do the opposite, researchers at Baylor and Campbell Universities found in a recently published study.
    Christopher M. Pieper, Ph.D., senior lecturer of sociology at Baylor University, and lead author Justin J. Nelson, M.A. ’16, Ph.D. ’19, assistant professor of sociology at Campbell University, partnered to understand the complex relationship between meaning-seeking and technology by analyzing data from the Baylor Religion Survey. Their research — “Maladies of Infinite Aspiration’: Smartphones, Meaning-Seeking, and Anomigenesis” — was published in the journal Sociological Perspectives.
    The researchers’ results provide a sociological link to the psychological studies that point to connections between digital devices and media use with feelings of loneliness, depression, unhappiness, suicidal ideation and other poor mental health outcomes.
    “Human beings are seekers — we seek meaning in our relationships, our work, our faith, in all areas of social life,” Pieper said. “As researchers, we were interested in the role that smartphones — and the media they give us instant access to — might be playing in meaning-seeking.
    “We conclude that smartphone attachment…could be anomigenic, causing a breakdown in social values because of the unstructured and limitless options they provide for seeking meaning and purpose and inadvertently exacerbate feelings of despair while simultaneously promising to resolve them,” Pieper said. “Seeking itself becomes the only meaningful activity, which is the basis of anomie and addiction.”
    Nelson and Pieper also found a connection between this search for meaning and feelings of attachment to one’s smartphone — a possible precursor to tech addiction.
    “Our research finds that meaning-seeking is associated with increased smartphone attachment — a feeling that you would panic if your phone stopped working,” Nelson said. “Social media use is also correlated with increased feelings of attachment.”
    The researchers concentrated on responses to questions used in Wave 5 of the national Baylor Religion Survey that related to information and communication technology (ICT) devices use, as well as questions related to meaning and purpose from the Meaning in Life Questionnaire, to show that while devices promise satisfaction and meaning, they often deliver the opposite.
    A key finding of the study is that this feeling of attachment is highest for those who use social media less often. However, the research found that individuals seeking solace or connection through their phones in shorter spurts might exacerbate attachment.
    “What is interesting is this association decreases for the heaviest of social media users,” Pieper said. “While we don’t know how this group uses social media, it might be that normalized use at the highest levels erases feelings of attachment for the individual — as we put it, it would be like saying one is attached to their eyes or lungs.”
    One positive the researchers found is that identifying a satisfying purpose for life seems to provide a protective effect against this sense of attachment and anomie, though this effect is not as strong as the opposite effect of meaning-seeking. Taken together, it is possible that media use bolstered by purpose, such as through family, work or faith, is less likely to produce alienating effects for the individual, the researchers said. But, not knowing what specific users are doing online, this remains a question for future research.
    “What we have uncovered is a social mechanism that draws us into smartphone use, and that might keep us hooked, exacerbating feelings of attachment and anomie, and even disconnection, while they promise the opposite,” Pieper said.
    Story Source:
    Materials provided by Baylor University. Note: Content may be edited for style and length. More