An on-chip time-lens generates ultrafast pulses
Femtosecond pulsed lasers — which emit light in ultrafast bursts lasting a millionth of a billionth of a second — are powerful tools used in a range of applications from medicine and manufacturing, to sensing and precision measurements of space and time. Today, these lasers are typically expensive table-top systems, which limits their use in applications that have size and power consumption restrictions.
An on-chip femtosecond pulse source would unlock new applications in quantum and optical computing, astronomy, optical communications and beyond. However, it’s been a challenge to integrate tunable and highly efficient pulsed lasers onto chips.
Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a high-performance, on-chip femtosecond pulse source using a tool that seems straight out of science fiction: a time lens.
The research is published in Nature.
“Pulsed lasers that produce high-intensity, short pulses consisting of many colors of light have remained large,” said Marko Lon?ar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author of the study. “To make these sources more practical, we decided to shrink a well-known approach, used to realize conventional — and large — femtosecond sources, leveraging a state of the art integrated photonics platform that we have developed. Importantly, our chips are made using microfabrication techniques like those used to make computer chips, which ensures not only reduced cost and size, but also improved performance and reliability of our femtosecond sources.”
Traditional lenses, like contact lenses or those found in magnifying glasses and microscopes, bend rays of light coming from different directions by altering their phase so that they hit the same location in space — the focal point. More