More stories

  • in

    Optical rule was made to be broken

    If you’re going to break a rule with style, make sure everybody sees it. That’s the goal of engineers at Rice University who hope to improve screens for virtual reality, 3D displays and optical technologies in general.
    Gururaj Naik, an associate professor of electrical and computer engineering at Rice’s George R. Brown School of Engineering, and Applied Physics Graduate Program alumna Chloe Doiron found a way to manipulate light at the nanoscale that breaks the Moss rule, which describes a trade-off between a material’s optical absorption and how it refracts light.
    Apparently, it’s more like a guideline than an actual rule, because a number of “super-Mossian” semiconductors do exist. Fool’s gold, aka iron pyrite, is one of them.
    For their study in Advanced Optical Materials, Naik, Doiron and co-author Jacob Khurgin, a professor of electrical and computer engineering at Johns Hopkins University, find iron pyrite works particularly well as a nanophotonic material and could lead to better and thinner displays for wearable devices.
    More important is that they’ve established a method for finding materials that surpass the Moss rule and offer useful light-handling properties for displays and sensing applications.
    “In optics, we’re still limited to a very few materials,” Naik said. “Our periodic table is really small. But there are so many materials that are simply unknown, just because we haven’t developed any insight on how to find them. More

  • in

    The thermodynamics of life taking shape

    Revealing the scientific laws that govern our world is often considered the ‘holy grail’ by scientists, as such discoveries have wide-ranging implications. In an exciting development from Japan, scientists have shown how to use geometric representations to encode the laws of thermodynamics, and apply these representations to obtain generalized predictions. This work may significantly improve our understanding of the theoretical limits that apply within chemistry and biology.
    While living systems are bound by the laws of physics, they often find creative ways to take advantage of these rules in ways that non-living physical systems rarely can. For example, every living organism finds a way to reproduce itself. At a fundamental level, this relies on autocatalytic cycles in which a certain molecule can spur the production of identical molecules, or a set of molecules produce each other. As part of this, the compartment in which the molecules exist grows in volume. However, scientific knowledge lacks a complete thermodynamic representation of such self-replicating processes, which would enable scientists to understand how living systems can emerge from non-living objects.
    Now, in two related articles published in Physical Review Research, researchers from the Institute of Industrial Science at The University of Tokyo used a geometric technique to characterize the conditions that correspond with the growth of a self-reproducing system. The guiding principle is the famous second law of thermodynamics, which requires that entropy — generally understood to mean disorder — can only increase. However, an increase in order may be possible, such as a bacterium absorbing nutrients to enable it to divide into two bacteria, but at the cost of increased entropy somewhere else. “Self-replication is a hallmark of living systems, and our theory helps explain the environmental conditions to determine their fate, whether growing, shrinking, or equilibration,” says senior author Tetsuya J. Kobayashi.
    The main insight was to represent the thermodynamic relationships as hypersurfaces in a multidimensional space. Then, the researchers could study what happens as various operations are performed, in this case, using the Legendre transformation. This transformation describes how a surface to be mapped into a different geometric object with a significant thermodynamic meaning.
    “The results were obtained solely on the basis of the second law of thermodynamics that the total entropy must increase. Because of this, assumptions of an ideal gas or other simplifications about the types of interactions in the system were not required,” says first author Yuki Sughiyama. Being able to calculate the rate of entropy production can be vital for evaluating biophysical systems. This research can help put the study of the thermodynamics of living systems on a more solid theoretical footing, which may improve our understanding of biological reproduction.
    Story Source:
    Materials provided by Institute of Industrial Science, The University of Tokyo. Note: Content may be edited for style and length. More

  • in

    Sport, sleep or screens: New app reveals the 'just right' day for kids

    Not too sport heavy, not too sleep deprived — finding the ‘just right’ balance in a child’s busy day can be a challenge. But while parents may struggle to squeeze in homework amid extracurricular commitments and downtime, a world-first app could provide a much-needed solution.
    Developed by University of South Australia in partnership with the Murdoch Children’s Research Institute, the Healthy-Day-App is helping parents understand which combination of activities can best help their child’s mental, physical, and academic outcomes.
    The study found that shifting 60 minutes of screen time to 60 minutes of physical activity resulted in 4.2 per cent lower body fat, 2.5 per cent improved wellbeing and 0.9 per cent higher academic performance.
    Lead researcher, UniSA’s Dr Dot Dumuid says that the app will help parents and health professionals better understand the relationships between children’s time use, health, and academic outcomes.
    “How children use their time can have a big impact on their health, wellbeing, and productivity,” Dr Dumuid says.
    “We know that screens are not great for children’s wellbeing, so if they’re choosing to play video games at the expense of playing sport, it’s easy to guess the negative impacts effects on their health. More

  • in

    New AI system predicts how to prevent wildfires

    Wildfires are a growing threat in a world shaped by climate change. Now, researchers at Aalto University have developed a neural network model that can accurately predict the occurrence of fires in peatlands. They used the new model to assess the effect of different strategies for managing fire risk and identified a suite of interventions that would reduce fire incidence by 50-76%.
    The study focused on the Central Kalimantan province of Borneo in Indonesia, which has the highest density of peatland fires in Southeast Asia. Drainage to support agriculture or residential expansion has made peatlands increasingly vulnerable to recurring fires. In addition to threatening lives and livelihoods, peatland fires release significant amounts of carbon dioxide. However, prevention strategies have faced difficulties because of the lack of clear, quantified links between proposed interventions and fire risk.
    The new model uses measurements taken before each fire season in 2002-2019 to predict the distribution of peatland fires. While the findings can be broadly applied to peatlands elsewhere, a new analysis would have to be done for other contexts. ‘Our methodology could be used for other contexts, but this specific model would have to be re-trained on the new data,’ says Alexander Horton, the postdoctoral researcher who carried out study.
    The researchers used a convolutional neural network to analyse 31 variables, such as the type of land cover and pre-fire indices of vegetation and drought. Once trained, the network predicted the likelihood of a peatland fire at each spot on the map, producing an expected distribution of fires for the year.
    Overall, the neural network’s predictions were correct 80-95% of the time. However, while the model was usually right in predicting a fire, it also missed many fires that actually occurred. About half of the observed fires weren’t predicted by the model, meaning that it isn’t suitable as an early-warning predictive system. Larger groupings of fires tended to be predicted well, while isolated fires were often missed by the network. With further work, the researchers hope to improve the network’s performance so it can also serve as an early-warning system.
    The team took advantage of the fact that fire predictions were usually correct to test the effect of different land management strategies. By simulating different interventions, they found that the most effective plausible strategy would be to convert shrubland and scrubland into swamp forests, which would reduce fire incidence by 50%. If this were combined with blocking all of the drainage canals except the major ones, fires would decrease by 70% in total.
    However, such a strategy would have clear economic drawbacks. ‘The local community is in desperate need of long-term, stable cultivation to booster the local economy,’ says Horton.
    An alternative strategy would be to establish more plantations, since well-managed dramatically reduce the likelihood of fire. However, the plantations are among the key drivers of forest loss, and Horton points out ‘the plantations are mostly owned by larger corporations, often based outside Borneo, which means the profits aren’t directly fed back into the local economy beyond the provision of labour for the local workforce.’
    Ultimately, fire prevention strategies have to balance risks, benefits, and costs, and this research provides the information to do that, explains Professor Matti Kummu, who led the study team. ‘We tried to quantify how the different strategies would work. It’s more about informing policy-makers than providing direct solutions.’
    Story Source:
    Materials provided by Aalto University. Note: Content may be edited for style and length. More

  • in

    How to make recyclable plastics out of CO2 to slow climate change

    It’s morning and you wake on a comfortable foam mattress made partly from greenhouse gas. You pull on a T-shirt and sneakers containing carbon dioxide pulled from factory emissions. After a good run, you stop for a cup of joe and guiltlessly toss the plastic cup in the trash, confident it will fully biodegrade into harmless organic materials. At home, you squeeze shampoo from a bottle that has lived many lifetimes, then slip into a dress fashioned from smokestack emissions. You head to work with a smile, knowing your morning routine has made Earth’s atmosphere a teeny bit carbon cleaner.

    Sound like a dream? Hardly. These products are already sold around the world. And others are being developed. They’re part of a growing effort by academia and industry to reduce the damage caused by centuries of human activity that has sent CO2 and other heat-trapping gases into the atmosphere (SN: 3/12/22, p. 16).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    The need for action is urgent. In its 2022 report, the United Nations Intergovernmental Panel on Climate Change, or IPCC, stated that rising temperatures have already caused irreversible damage to the planet and increased human death and disease (SN: 5/7/22 & 5/21/22, p. 8). Meanwhile, the amount of CO2 emitted continues to rise. The U.S. Energy Information Administration predicted last year that if current policy and growth trends continue, annual global CO2 emissions could rise from about 34 billion metric tons in 2020 to almost 43 billion by 2050.

    Carbon capture and storage, or CCS, is one strategy for mitigating climate change long noted by the IPCC as having “considerable” potential. A technology that has existed since the 1970s, CCS traps CO2 from smokestacks or ambient air and pumps it underground for permanent sequestration. Today, 27 CCS facilities operate around the world — 12 in the United States — storing an estimated 36 million tons of carbon per year, according to the Global CCS Institute. The 2021 Infrastructure Investment and Jobs Act includes $3.5 billion in funding for four additional U.S. direct capture facilities.

    But rather than just storing it, the captured carbon could be used to make things. This year for the first time, the IPCC added carbon capture and utilization, or CCU, to its list of options for drawing down atmospheric carbon. CCU captures CO2 and incorporates it into carbon-containing products like cement, jet fuel and the raw materials for making plastics. Still in early stages of development and commercialization, CCU could reduce annual greenhouse gas emissions by 20 billion tons in 2050 — more than half of the world’s global emissions today, the IPCC estimates.

    Such recognition was a big victory for a movement that has struggled to emerge from the shadow of its more established cousin, CCS, says chemist and global CCU expert Peter Styring of the University of Sheffield in England. Many CCU-related companies are springing up and collaborating with each other and with governments around the world, he adds.

    The potential of CCU is “enormous,” both in terms of its volume and monetary potential, said mechanical engineer Volker Sick at a CCU conference in Brussels in April. Sick, of the University of Michigan in Ann Arbor, directs the Global CO2 Initiative, which promotes CCU as a mainstream climate solution. “We’re not talking about something that’s nice to do but doesn’t move the needle,” he added. “It moves the needle in many, many aspects.”

    The plastics paradox

    The use of carbon dioxide in products is not new. CO2 is used to make soda fizzy, keep foods frozen (as dry ice) and convert ammonia to urea for fertilizer. What’s new is the focus on making products with CO2 as a strategy to slow climate change. Today’s CCU market, estimated at $2 billion, could mushroom to $550 billion by 2040, according to Lux Research, a Boston-based market research firm. Much of this market is driven by adding CO2 to cement — which can improve its properties as well as reduce atmospheric carbon — and to jet fuel, which can lower the industry’s large carbon footprint. CO2-to-plastics is a niche market today, but the field aims to battle two crises at once: climate change and plastic pollution.

    Plastics are made from fossil fuels, a mix of hydrocarbons formed by the remains of ancient organisms. Most plastics are produced by refining crude oil, which is then broken down into smaller molecules through a process called cracking. These smaller molecules, known as monomers, are the building blocks of polymers. Monomers such as ethylene, propylene, styrene and others are linked together to form plastics such as polyethylene (detergent bottles, toys, rigid pipes), polypropylene (water bottles, luggage, car parts) and polystyrene (plastic cutlery, CD cases, Styrofoam).

    But making plastics from fossil fuels is a carbon catastrophe. Each step in the plastics life cycle — extraction, transport, manufacture and disposal — emits massive amounts of greenhouse gases, mostly CO2, according to the Center for International Environmental Law, a nonprofit law firm based in Geneva and Washington, D.C. These emissions alone — more than 850 million tons of greenhouse gases in 2019 — are enough to threaten global climate targets.

    And the numbers are about to get much worse. A 2018 report by the Paris-based intergovernmental International Energy Agency projected that global demand for plastics will increase from about 400 million tons in 2020 to nearly 600 million by 2050. Future demand is expected to be concentrated in developing countries and will vastly outstrip global recycling efforts.

    Plastics are a serious crisis for the environment, from fossil fuel use to their buildup in landfills and oceans (SN: 1/16/21, p. 4). But we’re a society addicted to plastic and all it gives us — cell phones, computers, comfy Crocs. Is there a way to have our (plastic-wrapped) cake and eat it too?

    Yes, says Sick. First, he argues, cap the oil wells. Next, make plastics from aboveground carbon. Today, there are products made of 20 to over 40 percent CO2. Finally, he says, build a circular economy, one that reduces resource use, reuses products, then recycles them into other new products.

    “Not only can we eliminate the fossil carbon as a source so that we don’t add to the aboveground carbon budget, but in the process we can also rethink how we make plastics,” Sick says. He suggests they be specifically designed “to live very, very long so that they don’t have to be replaced … or that they decompose in a benign manner.”

     But creating plastics from thin air is not easy. CO2 needs to be extracted, from the atmosphere or smokestacks, for example, using specialized equipment. It often needs to be compressed into liquid form and transported, generally through pipelines. Finally, to meet the overall goal of reducing the amount of carbon in the air, the chemical reaction that turns CO2 into the building blocks of plastics must be run with as little extra energy as possible. Keeping energy use low is a special challenge when dealing with the carbon dioxide molecule.

    A bond that’s hard to break

    There’s a reason that carbon dioxide is such a potent greenhouse gas. It is incredibly stable and can linger in the atmosphere for 300 to 1,000 years. That stability makes CO2 hard to break apart and add to other chemicals. Lots of energy is typically needed for the reaction.

    “This is the fundamental energy problem of CO2,” says chemist Ian Tonks of the University of Minnesota in Minneapolis. “Energy is necessary to fix CO2 to plastics. We’re trying to find that energy in creative ways.”

    Catalysts offer a possible answer. These substances can increase the rate of a chemical reaction, and thus reduce the need for energy. Scientists in the CO2-to-plastics field have spent more than a decade searching for catalysts that can work at close to room temperature and pressure, and coax CO2 to form a new chemical identity. These efforts fall into two broad categories: chemical and biological conversion.

    First attempts

    Early experiments focused on adding CO2 to highly reactive monomers like epoxides to facilitate the reaction. Epoxides are three-membered rings composed of one oxygen atom and two carbon atoms. Like a spring under tension, they can easily pop open. In the early 2000s, industrial chemist Christoph Gürtler and chemist Walter Leitner of Aachen University in Germany found a zinc catalyst that allowed them to break open the epoxide ring of polypropylene oxide and combine it with CO2. Following the reaction, the CO2 was joined permanently to the polypropylene molecule and was no longer in gas form — something that is true of all CO2-to-plastic reactions. Their work resulted in one of the first commercial CO2 products — a polyurethane foam containing 20 percent captured CO2. Today, the German company Covestro, where Gürtler now works, sells 5,000 tons of the product annually in mattresses, car interiors, building insulation and sports flooring.

    More recent research has focused on other monomers to expand the variety of CO2-based plastics. Butadiene is a hydrocarbon monomer that can be used to make polyester for clothing, carpets, adhesives and other products.

    In 2020, chemist James Eagan at the University of Akron in Ohio mixed butadiene and CO2 with a series of catalysts developed at Stanford University. Eagan hoped to create a polyester that is carbon negative, meaning it has a net effect of removing CO2 from the atmosphere, rather than adding it. When he analyzed the contents of one vial, he discovered he had created something even better: a polyester made with 29 percent CO2 that degrades in high pH water into organic materials.

    Chemist James Eagan and colleagues created a degradable polyester made partially with waste CO2.THE UNIV. OF AKRON

    “Chemistry is like cooking,” Eagan says. “We took chocolate chips, flour, eggs, butter, mixed them up, and instead of getting cookies we opened the oven and found a chicken potpie.”

    Eagan’s invention has immediate applications in the recycling industry, where machines can often get gummed up from the nondegradable adhesives used in packaging, soda bottle labels and other products. An adhesive that easily breaks down may improve the efficiency of recycling facilities.

    Tonks, described by Eagan as a friendly competitor, took Eagan’s patented process a step further. By putting Eagan’s product through one more reaction, Tonks made the polymer fully degradable back to reusable CO2 — a circular carbon economy goal. Tonks created a start-up this year called LoopCO2 to produce a variety of biodegradable plastics.

    Microbial help

    Researchers have also harnessed microbes to help turn carbon dioxide into useful materials including dress fabric. Some of the planet’s oldest-living microbes emerged at a time when Earth’s atmosphere was rich in carbon dioxide. Known as acetogens and methanogens, the microbes developed simple metabolic pathways that use enzyme catalysts to convert CO2 and carbon monoxide into organic molecules. In the atmosphere, CO will react with oxygen to form CO2. In the last decade, researchers have studied the microbes’ potential to remove these gases from the atmosphere and turn them into useful products.

    LanzaTech, based in Skokie, Ill., uses the acetogenic bacterium Clostridium autoethanogenum to metabolize CO2and CO emissions into a variety of industrial chemicals, including ethanol. Last year, the clothing company Zara began using LanzaTech’s polyester fabric for a line of dresses.

    The ethanol used to create these products comes from LanzaTech’s two commercial facilities in China, the first to transform waste CO, a main emission from steel plants, into ethanol. The ethanol goes through two more steps to become polyester. LanzaTech partnered with steel mills near Beijing and in north-central China, feeding carbon monoxide into LanzaTech’s microbe-filled bioreactor.

    Steel production emits almost two tons of CO2 for every ton of steel made. By contrast, a life cycle assessment study found that LanzaTech’s ethanol production process lowered greenhouse gas emissions by approximately 80 percent compared with ethanol made from fossil fuels.

    In February, researchers from LanzaTech, Northwestern University in Evanston, Ill., and others reported in Nature Biotechnology that they had genetically modified the Clostridium bacterium to produce acetone and isopropanol, two other fossil fuel–based industrial chemicals. Company CEO Jennifer Holmgren says the only waste product is dead bacteria, which can be used as compost or animal feed.

    Other researchers are skipping the living microbes and just using their catalysts. More than a decade ago, chemist Charles Dismukes of Rutgers University in Piscataway, N.J., began looking at acetogens and methanogens as a way to use atmospheric carbon. He was intrigued by their ability to release energy when making carbon building blocks from CO2, a reaction that usually requires energy. He and his team focused on the bacteria’s nickel phosphide catalysts, which are responsible for the energy-releasing carbon reaction.

    Dismukes and colleagues developed six electrocatalysts that are able to make monomers at room temperature and pressure using only CO2, water and electricity. The energy­-releasing pathway of the nickel phosphide catalysts “lowers the required voltage to run the reaction, which lowers the energy consumption of the process and improves the carbon footprint,” says Karin Calvinho, a former student of Dismukes who is now chief technical officer at RenewCO2, the start-up Dismukes’ team formed in 2018.

    RenewCO2 plans to sell its monomers, including monoethylene glycol, to companies that want to reduce their carbon footprint. The group proved its concept works using CO2 brought into the lab. In the future, the company intends to obtain CO2 from biomass, industrial emissions or direct air capture.

    Barriers to change

    Yet researchers and companies face challenges in scaling up carbon capture and reuse. Some barriers lurk in the language of regulations written before CCU existed. An example is the U.S. Environmental Protection Agency’s program to provide tax credits to companies that make biofuels. The program is geared toward plant-based fuels like corn and sugar­cane. LanzaTech’s approach for making jet fuel doesn’t qualify for credits because bacteria are not plants.

    Other barriers are more fundamental. Styring points to the long-standing practice of fossil fuel subsidies, which in 2021 topped $440 billion worldwide. Global government subsidies to the oil and gas industry keep fossil fuel prices artificially low, making it hard for renewables to compete, according to the International Energy Agency. Styring advocates shifting those subsidies toward renewables.

    “We try to work on the principle that we recycle carbon and create a circular economy,” he says. “But current legislation is set up to perpetuate a linear economy.”

    The happy morning routine that makes the world carbon cleaner is theoretically possible. It’s just not the way the world works yet. Getting to that circular economy, where the amount of carbon above ground is finite and controlled in a never-ending loop of use and reuse will require change on multiple fronts. Government policy and investment, corporate practices, technological development and human behavior would need to align perfectly and quickly in the interests of the planet.

    In the meantime, researchers continue their work on the carbon dioxide molecule.

    “I try to plan for the worst-case scenario,” says Eagan, the chemist in Akron. “If legislation is never in place to curb emissions, how do we operate within our capitalist system to generate value in a renewable and responsible way? At the end of the day, we will need new chemistry.” More

  • in

    A carbon footprint life cycle assessment can cut down on greenwashing

    Today, you can buy a pair of sneakers partially made from carbon dioxide pulled out of the atmosphere. But measuring the carbon-reduction benefits of making that pair of sneakers with CO2 is complex. There’s the fossil fuel that stayed in the ground, a definite carbon savings. But what about the energy cost of cooling the CO2 into liquid form and transporting it to a production facility? And what about when your kid outgrows the shoes in six months and they can’t be recycled into a new product because those systems aren’t in place yet?

    As companies try to reduce their carbon footprint, many are doing life cycle assessments to quantify the full carbon cost of products, from procurement of materials to energy use in manufacturing to product transport to user behavior and end-of-life disposal. It’s a mind-bogglingly difficult metric, but such bean-counting is needed to hold the planet to a livable temperature, says low-carbon systems expert Andrea Ramirez Ramirez of the Delft University of Technology in the Netherlands.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Carbon accounting is easy to get wrong, she says. Differences in starting points for determining a product’s “lifetime” or assumptions about the energy sources can all affect the math.

    Carbon use can be reduced at many points along the production chain—by using renewable energy in the manufacturing process, for instance, or by adding atmospheric CO2 to the product. But if other points along the chain are energy-intensive or emit CO2, she notes, the final tally may show a positive rather than a negative number.

    A product is carbon negative only when its production actually removes carbon from the environment, temporarily or permanently. The Global CO2 Initiative, with European and American universities, has created a set of LCA guidelines to standardize measurement so that carbon accounting is consistent and terms such as “carbon neutral” or “carbon negative” have a verifiable meaning.

    In the rush to create products that can be touted as fighting climate change, however, some firms have been accused of “greenwashing” – making products or companies appear more environmentally friendly than they really are. Examples of greenwashing, according to a March 2022 analysis by mechanical engineers Grant Faber and Volker Sick of the University of Michigan in Ann Arbor include labeling plastic garbage bags as recyclable when their whole purpose is to be thrown away; using labels such as “eco-friendly” or “100% Natural” without official certification; and claiming a better carbon footprint without acknowledging the existence of even better choices. An example would be “fuel-efficient” sport utility vehicles, which are only fuel efficient when compared with other SUVs rather than with smaller cars, public transit or bicycles.

    Good LCA analysis, Sick says, can distinguish companies that are carbon-friendly in name only, from those that are truly helping the world clear the air.  More

  • in

    Collaborative machine learning that preserves privacy

    Training a machine-learning model to effectively perform a task, such as image classification, involves showing the model thousands, millions, or even billions of example images. Gathering such enormous datasets can be especially challenging when privacy is a concern, such as with medical images. Researchers from MIT and the MIT-born startup DynamoFL have now taken one popular solution to this problem, known as federated learning, and made it faster and more accurate.
    Federated learning is a collaborative method for training a machine-learning model that keeps sensitive user data private. Hundreds or thousands of users each train their own model using their own data on their own device. Then users transfer their models to a central server, which combines them to come up with a better model that it sends back to all users.
    A collection of hospitals located around the world, for example, could use this method to train a machine-learning model that identifies brain tumors in medical images, while keeping patient data secure on their local servers.
    But federated learning has some drawbacks. Transferring a large machine-learning model to and from a central server involves moving a lot of data, which has high communication costs, especially since the model must be sent back and forth dozens or even hundreds of times. Plus, each user gathers their own data, so those data don’t necessarily follow the same statistical patterns, which hampers the performance of the combined model. And that combined model is made by taking an average — it is not personalized for each user.
    The researchers developed a technique that can simultaneously address these three problems of federated learning. Their method boosts the accuracy of the combined machine-learning model while significantly reducing its size, which speeds up communication between users and the central server. It also ensures that each user receives a model that is more personalized for their environment, which improves performance.
    The researchers were able to reduce the model size by nearly an order of magnitude when compared to other techniques, which led to communication costs that were between four and six times lower for individual users. Their technique was also able to increase the model’s overall accuracy by about 10 percent. More

  • in

    Modified microwave oven cooks up next-gen semiconductors

    A household microwave oven modified by a Cornell engineering professor is helping to cook up the next generation of cellphones, computers and other electronics after the invention was shown to overcome a major challenge faced by the semiconductor industry.
    The research is detailed in a paper published in Applied Physics Letters. The lead author is James Hwang, a research professor in the department of materials science and engineering.
    As microchips continue to shrink, silicon must be doped, or mixed, with higher concentrations of phosphorus to produce the desired current. Semiconductor manufacturers are now approaching a critical limit in which heating the highly doped materials using traditional methods no longer produces consistently functional semiconductors.
    The Taiwan Semiconductor Manufacturing Company (TSMC) theorized that microwaves could be used to activate the excess dopants, but just like with household microwave ovens that sometimes heat food unevenly, previous microwave annealers produced “standing waves” that prevented consistent dopant activation.
    TSMC partnered with Hwang, who modified a microwave oven to selectively control where the standing waves occur. Such precision allows for the proper activation of the dopants without excessive heating or damage of the silicon crystal.
    This discovery could be used to produce semiconductor materials and electronics appearing around the year 2025, said Hwang, who has filed two patents for the prototype.
    “A few manufacturers are currently producing semiconductor materials that are 3 nanometers,” Hwang said. “This new microwave approach can potentially enable leading manufacturers such as TSMC and Samsung to scale down to just 2 nanometers.”
    The breakthrough could change the geometry of transistors used in microchips. For more than 20 years, transistors have been made to stand up like dorsal fins so that more can be packed on each microchip, but manufacturers have recently begun to experiment with a new architecture in which transistors are stacked horizontally. The excessively doped materials enabled by microwave annealing would be key to the new architecture.
    Story Source:
    Materials provided by Cornell University. Original written by Syl Kacapyr, courtesy of the Cornell Chronicle. Note: Content may be edited for style and length. More