A drop in the sea of electrons
Recent Australian-led research has provided a world’s first measurement of interactions between Fermi polarons in an atomically-thin 2D semiconductor, using ultrafast spectroscopy capable of probing complex quantum materials.
Researchers at Swinburne University of Technology found the signatures of interactions between exciton-polarons in experiments on the 2D semiconductor monolayer tungsten-disulfide.
FLEET collaborators at Monash University and RMIT developed a theoretical model to explain the experimental signals. They found that repulsive interactions at long-range are mediated by a phase-space filling effect, while attractive interactions at short range led to the formation of a cooperatively bound exciton-exciton-electron state.
The Material
Tungsten-disulfide (WS2) comes from the family of semiconducting transition metal dichalcogenides (TMDCs). When the bulk material is exfoliated down to a single atomic monolayer (less than 1 nanometre thick), the physics of these 2D materials becomes really interesting, and controllable.
Much of the intriguing physics is described by the creation and interactions of quasiparticles*. Excitons are one such quasiparticle, and they dominate the optical response of monolayer WS2. Excitons are formed when electrons from the valence band are excited into the conduction band. The vacancy left behind (a hole) can then bind to the excited electron through Coulomb forces, forming the exciton. More

