More stories

  • in

    Code-free conservation

    Thanks to high-tech, low-cost tracking devices, the study of wildlife movement is having its Big Data moment. But so far, only people with data science skills have been able to glean meaningful insights from this ‘golden age’ of tracking. A new system from the Max Planck Institute of Animal Behavior (MPI-AB) and the University of Konstanz is changing that. MoveApps is a platform that lets scientists and wildlife managers explore animal movement data — with little more than a device and a browser — to tackle real-world issues.
    The system is linked to the database Movebank, developed by MPI-AB and hosted at the Max Planck Computing and Data Facility (MPCDF), which stores tracking data for over one thousand animal species worldwide. This tracking data can be pulled into MoveApps where owners of these data can then run complex analyses to find meaning in the numbers. A ranger could use the system to keep an eye on tracked animals in the park, creating a daily map showing where animals are located. Or, a conservation agency working with endangered species could receive an alert when a sudden clustering of GPS points suggests that an animal might have died.
    In a paper published in Movement Ecology, the authors detail how MoveApps unites programmers with data owners needing analytical tools on an open, serverless platform. While programmers develop tools that become openly available on the platform, users can browse these tools and run analyses with a few simple clicks on a user-friendly web-based interface.
    The aim is to turn animal tracking Big Data towards solving big problems — by making it possible to analyze and make sense of movement data quickly and easily.
    “You don’t need a data science degree, you don’t need to work at a university, you don’t need a software license or a big computer,” says first author Andrea Kölzsch, MoveApps project lead and postdoc at MPI-AB “You just need to have a question that can be answered with animal tracking data.”
    Near real-time analysis for rapid response
    When the North Carolina Zoo began tagging and tracking African vultures seven years ago, zoo staff would spend hours each day analyzing the GPS data to figure out if they needed to check on the birds. African vultures are the fastest declining group of birds globally and are particularly susceptible to poisoning by feeding on carcasses laced with pesticides. Because a poisoned carcass can kill over a hundred vultures in a matter of hours, zoo staff need to quickly identify feeding events, indicated by a clustering of GPS points from tagged birds. More

  • in

    Underground heat pollution could be tapped to mitigate climate change

    The secret to efficiently heating some buildings might lurk beneath our feet, in the heat that humans have inadvertently stored underground. 

    Just as cities warm the surrounding air, giving rise to urban heat islands, so too does human infrastructure warm the underlying earth (SN: 3/27/09). Now, an analysis of groundwater well sites across Europe and parts of North America and Australia reveals that roughly a couple thousand of those locations possess excess underground heat that could be recycled to warm buildings for a year, researchers report July 8 in Nature Communications.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    What’s more, even if humans managed to remove all this accumulated thermal pollution, existing infrastructure at about a quarter of the locations would continue to warm the ground enough that heat could be harvested for many years to come. That could reduce reliance on fossil fuels, and help mitigate climate change.

    This work showcases the impact that underground heat recycling could have if harnessed on a large scale, says hydrogeologist Grant Ferguson of the University of Saskatchewan in Saskatoon, Canada, who was not involved in the study. “There’s a lot of untapped potential out there.”

    Heat leaks into the subsurface from the warm roots of structures such as buildings, parking garages and tunnels, and from artificial surfaces such as asphalt, which absorb solar radiation. In Lyon, France, for example, researchers in 2016 found that human infrastructure warmed groundwater by more than 4 degrees Celsius.

    Scientists don’t fully understand how heat pollution alters underground environments. But warming of the subsurface can cause contaminants, such as arsenic, to move through groundwater more readily.

    Extracting the thermal pollution could be accomplished by piping groundwater to heat pumps at the surface. The water, warmed underground by all that trapped heat, could then warm buildings as it releases heat into their cooler interiors, says Susanne Benz, an environmental scientist at Dalhousie University in Halifax, Canada.

    Harnessing underground heat in this way could provide some communities with a reliable and low-energy means to warm their homes, Benz says. “And if we don’t use it, it will just continue to accumulate,” she says.

    Benz and her colleagues analyzed the population size, heating demand and groundwater temperature at more than 6,000 locations, most of which were in Europe. The researchers found that at about 43 percent of the locations — mostly those near highly populated areas — enough heat had accumulated in the top 20 meters of earth to satisfy a year’s worth of the local heating demand.

    Curious about sustainability, the researchers also identified places where the continuous flow of heat into the underground — and not just the stockpiled thermal pollution — was high. Their calculations show that if all of the accumulated heat was first extracted, the heat that continued leaking from existing infrastructure could be harvested at about 25 percent of the 6,000 locations. At 18 percent of locations, this recycled heat could satisfy at least a quarter of the heating demand of the local population.

    Constructing systems to take advantage of human heat pollution today could one day help residents harvest heat from climate change, the researchers say.

    Using climate projections for the end of the century, the team probed the feasibility of extracting underground heat in a warmer world. In the most optimistic warming scenario considered, which assumes greenhouse gas emissions peak about the year 2040, the researchers found that climate change would warm the ground enough by the end of the century that underground heat recycling at 81 percent of the studied locations could meet more than a quarter of locals’ heating demands. If there are no efforts to curb emissions, that number rises to 99 percent of locations.

    Though the researchers focused mostly on Europe, Benz says that other continents probably also possess abundant underground heat that could be harnessed. In Europe and elsewhere, heat recycling might be most feasible in suburban areas, she says, where there is sufficient accumulated underground heat to help meet local heating demands, and space to install heat recycling systems.

    Looking ahead, Benz plans to investigate whether cooling the subsurface can help reduce aboveground temperatures in urban environments. “This might actually be a little additional tool to control [aboveground] urban heat.” More

  • in

    Deformable pump gives soft robots a heart

    The Tin Man didn’t have one. The Grinch’s was three sizes too small. And for soft robots, the electronically powered pumps that function as their “hearts” are so bulky and rigid, they must be decoupled from the robot’s body — a separation that can leak energy and render the bots less efficient.
    Now, a collaboration between Cornell researchers and the U.S. Army Research Laboratory has leveraged hydrodynamic and magnetic forces to drive a rubbery, deformable pump that can provide soft robots with a circulatory system, in effect mimicking the biology of animals.
    “These distributed soft pumps operate much more like human hearts and the arteries from which the blood is delivered,” said Rob Shepherd, associate professor of mechanical and aerospace engineering in the College of Engineering, who led the Cornell team. “We’ve had robot blood that we published from our group, and now we have robot hearts. The combination of the two will make more lifelike machines.”
    The group’s paper, “Magnetohydrodynamic Levitation for High-Performance Flexible Pumps,” published July 11 in Proceedings of the National Academy of Sciences. The paper’s lead author was postdoctoral researcher Yoav Matia.
    Shepherd’s Organic Robotics Lab has previously used soft material composites to design everything from stretchable sensor “skin” to combustion-driven braille displays and clothing that monitors athletic performance — plus a menagerie of soft robots that can walk and crawl and swim and sweat. Many of the lab’s creations could have practical applications in the fields of patient care and rehabilitation.
    Like animals, soft robots need a circulatory system to store energy and power their appendages and movements to complete complex tasks.
    The new elastomeric pump consists of a soft silicone tube fitted with coils of wire — known as solenoids — that are spaced around its exterior. Gaps between the coils allow the tube to bend and stretch. Inside the tube is a solid core magnet surrounded by magnetorheological fluid — a fluid that stiffens when exposed to a magnetic field, which keeps the core centered and creates a crucial seal. Depending on how the magnetic field is applied, the core magnet can be moved back and forth, much like a floating piston, to push fluids — such as water and low-viscosity oils — forward with continuous force and without jamming.
    “We’re operating at pressures and flow rates that are 100 times what has been done in other soft pumps,” said Shepherd, who served as the paper’s co-senior author with Nathan Lazarus of the U.S. Army Research Laboratory. “Compared to hard pumps, we’re still about 10 times lower in performance. So that means we can’t push really viscous oils at very high flow rates.”
    The researchers conducted an experiment to demonstrate that the pump system can maintain a continuous performance under large deformations, and they tracked the performance parameters so future iterations can be custom-tailored for different types of robots.
    “We thought it was important to have scaling relationships for all the different parameters of the pump, so that when we design something new, with different tube diameters and different lengths, we would know how we should tune the pump for the performance we want,” Shepherd said.
    Postdoctoral researcher Hyeon Seok An contributed to the paper.
    The research was supported by the U.S. Army Research Laboratory.
    Story Source:
    Materials provided by Cornell University. Original written by David Nutt, courtesy of the Cornell Chronicle. Note: Content may be edited for style and length. More

  • in

    Predicting equatorial plasma bubbles with SWARM

    Changes in atmospheric density after sunset can cause hot pockets of gas called ‘plasma bubbles’ to form over the Earth’s equator, resulting in communication disruptions between satellites and the Earth. New AI models are now helping scientists to predict plasma bubble events and create a forecast. The work was presented this week at the National Astronomy Meeting (NAM 2022) by Sachin Reddy, a PhD student at University College London.
    Shortly after sunset, pockets of super-heated gas called ‘plasma bubbles’ form in the upper atmosphere and stretch into space (up to 900km above the Earth’s surface). These bubbles start small and grow rapidly — from the size of a football pitch to that of a small country in just a couple of hours. As the bubbles grow bigger, they can prevent satellites from communicating with the Earth by blocking and warping their radio signals.
    To predict plasma bubbles, a team of researchers has collated 8 years of data from the SWARM satellite mission. The spacecraft has an automatic bubble detector on-board called the Ionospheric Bubble Index. This compares changes in the density of electrons and the magnetic field strength to check if bubbles are present: a strong correlation between the two indicates the presence of a plasma bubble.
    The satellite flies at an altitude of 460km (about 30x higher than a commercial plane) through the middle of most plasma bubbles. The model combines the data collection from SWARM with a machine learning approach to make predictions on the likelihood of a plasma bubble event occurring at any time.
    The results show that the number of plasma bubble events varies from season to season, just like the weather, and that the number of events increases with solar activity. Despite this, the model finds location to be a far more crucial element in predicting plasma bubbles than the time of year, with most events occurring over a region in the Atlantic called the South Atlantic Anomaly. The AI model predicts events with an accuracy of 91% across different tests.
    Reddy says: “Just like the weather forecast on earth, we need to be able to forecast bubbles to prevent major disruptions to satellite services. Our aim is to be able to say something like: “At 8pm tomorrow there is a 30% chance of a bubble appearing over the Horn of Africa.” This kind of information is extremely useful for spacecraft operators and for people who depend on satellite data every day, just like you and me.”
    Story Source:
    Materials provided by Royal Astronomical Society. Note: Content may be edited for style and length. More

  • in

    Increased use of videoconferencing apps during COVID-19 pandemic led to more fatigue among workers, study finds

    Researchers at Nanyang Technological University, Singapore (NTU Singapore) have found that the increased use of videoconferencing platforms during the COVID-19 pandemic contributed to a higher level of fatigue, as reported by workers.
    Following work-from-home orders issued by governments worldwide during the pandemic, many employees attended meetings virtually using technologies such as Zoom or Microsoft Teams, instead of meeting face-to-face.
    In a survey conducted in December 2020, the NTU research team found that 46.2% of all respondents reported feelings of fatigue or being overwhelmed, tired, or drained from the use of videoconferencing applications.
    The researchers derived the results through an analysis of a survey of 1,145 Singapore residents in full-time employment and who had indicated that they use videoconferencing apps frequently.
    The researchers from the NTU Wee Kim Wee School of Communication and Information (WKWSCI) and its Centre for Information Integrity and the Internet (IN-cube), published their findings in the journal Computers in Human Behavior Reports in June 2022.
    Assistant Professor Benjamin Li, from NTU’s WKWSCI, who led the study, said: “We were motivated to conduct our study after hearing of increasing reports of fatigue from the use of videoconferencing applications during the pandemic. We found that there was a clear relation between the increased use of videoconferencing and fatigue in Singaporean workers. Our findings are even more relevant in today’s context, as the use of videoconferencing tools is here to stay, due to flexible work arrangements being a continuing trend.” He is also a member of IN-cube. More

  • in

    Using AI to diagnose birth defect in fetal ultrasound images

    In a new proof-of-concept study led by Dr. Mark Walker at the University of Ottawa’s Faculty of Medicine, researchers are pioneering the use of a unique Artificial Intelligence-based deep learning model as an assistive tool for the rapid and accurate reading of ultrasound images.
    The goal of the team’s study was to demonstrate the potential for deep-learning architecture to support early and reliable identification of cystic hygroma from first trimester ultrasound scans. Cystic hygroma is an embryonic condition that causes the lymphatic vascular system to develop abnormally. It’s a rare and potentially life-threatening disorder that leads to fluid swelling around the head and neck.
    The birth defect can typically be easily diagnosed prenatally during an ultrasound appointment, but Dr. Walker — co-founder of the OMNI Research Group (Obstetrics, Maternal and Newborn Investigations) at The Ottawa Hospital — and his research group wanted to test how well AI-driven pattern recognition could do the job.
    “What we demonstrated was in the field of ultrasound we’re able to use the same tools for image classification and identification with a high sensitivity and specificity,” says Dr. Walker, who believes their approach might be applied to other fetal anomalies generally identified by ultrasonography.
    Story Source:
    Materials provided by University of Ottawa. Note: Content may be edited for style and length. More

  • in

    Researchers learn to control electron spin at room temperature to make devices more efficient and faster

    As our devices become smaller, faster, more energy efficient, and capable of holding larger amounts of data, spintronics may continue that trajectory. Whereas electronics is based on the flow of electrons, spintronics is based on the spin of electrons.
    An electron has a spin degree of freedom, meaning that it not only holds a charge but also acts like a little magnet. In spintronics, a key task is to use an electric field to control electron spin and rotate the north pole of the magnet in any given direction.
    The spintronic field effect transistor harnesses the so-called Rashba or Dresselhaus spin-orbit coupling effect, which suggests that one can control electron spin by electric field. Although the method holds promise for efficient and high-speed computing, certain challenges must be overcome before the technology reaches its true, miniature but powerful, and eco-friendly, potential.
    For decades, scientists have been attempting to use electric fields to control spin at room temperature but achieving effective control has been elusive. In research recently published in Nature Photonics, a research team led by Jian Shi and Ravishankar Sundararaman of Rensselaer Polytechnic Institute and Yuan Ping of the University of California at Santa Cruz took a step forward in solving the dilemma.
    “You want the Rashba or Dresselhaus magnetic field to be large to make the electron spin precess quickly,” said Dr. Shi, associate professor of materials science and engineering. “If it’s weak, the electron spin precesses slowly and it would take too much time to turn the spin transistor on or off. However, often a larger internal magnetic field, if not arranged well, leads to poor control of electron spin.”
    The team demonstrated that a ferroelectric van der Waals layered perovskite crystal carrying unique crystal symmetry and strong spin-orbit coupling was a promising model material to understand the Rashba-Dresselhaus spin physics at room temperature. Its nonvolatile and reconfigurable spin-related room temperature optoelectronic properties may inspire the development of important design principles in enabling a room-temperature spin field effect transistor.
    Simulations revealed that this material was particularly exciting, according to Dr. Sundararaman, associate professor of materials science and engineering. “The internal magnetic field is simultaneously large and perfectly distributed in a single direction, which allows the spins to rotate predictably and in perfect concert,” he said. “This is a key requirement to use spins for reliably transmitting information.”
    “It’s a step forward toward the practical realization of a spintronic transistor,” Dr. Shi said.
    The first authors of this article include graduate student Lifu Zhang and postdoctoral associate Jie Jiang from Dr. Shi’s group, as well as graduate student Christian Multunas from Dr. Sundararaman’s group.
    This work was supported by the United States Army Research Office (Physical Properties of Materials program by Dr. Pani Varanasi), the Air Force Office of Scientific Research, and the National Science Foundation.
    Story Source:
    Materials provided by Rensselaer Polytechnic Institute. Original written by Katie Malatino. Note: Content may be edited for style and length. More

  • in

    Most complex protein knots

    Theoretical physicists at Johannes Gutenberg University Mainz have put Google’s artificial intelligence AlphaFold to the test and have found the most complex protein knots so far.
    The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.
    A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.
    The most complex knots as a test for AlphaFold
    “We investigated numerically all — that is some 100,000 — predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr. Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins,” added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.
    Dr. Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence — and we are fortunate to have an expert like Dr. Yeates involved.”
    Story Source:
    Materials provided by Johannes Gutenberg Universitaet Mainz. Note: Content may be edited for style and length. More