New, highly tunable composite materials–with a twist
Watch for the patterns created as the circles move across each other. Those patterns, created by two sets of lines offset from each other, are called moiré (pronounced mwar-AY) effects. As optical illusions, moiré patterns create neat simulations of movement. But at the atomic scale, when one sheet of atoms arranged in a lattice is slightly offset from another sheet, these moiré patterns can create some exciting and important physics with interesting and unusual electronic properties.
Mathematicians at the University of Utah have found that they can design a range of composite materials from moiré patterns created by rotating and stretching one lattice relative to another. Their electrical and other physical properties can change — sometimes quite abruptly, depending on whether the resulting moiré patterns are regularly repeating or non-repeating. Their findings are published in Communications Physics.
The mathematics and physics of these twisted lattices applies to a wide variety of material properties, says Kenneth Golden, distinguished professor of mathematics. “The underlying theory also holds for materials on a large range of length scales, from nanometers to kilometers, demonstrating just how broad the scope is for potential technological applications of our findings.”
With a twist
Before we arrive at these new findings, we’ll need to chart the history of two important concepts: aperiodic geometry and twistronics.
Aperiodic geometry means patterns that don’t repeat. An example is the Penrose tiling pattern of rhombuses. If you draw a box around a part of the pattern and start sliding it in any direction, without rotating it, you’ll never find a part of the pattern that matches it. More