AI pilot can navigate crowded airspace
A team of researchers at Carnegie Mellon University believe they have developed the first AI pilot that enables autonomous aircraft to navigate a crowded airspace.
The artificial intelligence can safely avoid collisions, predict the intent of other aircraft, track aircraft and coordinate with their actions, and communicate over the radio with pilots and air traffic controllers. The researchers aim to develop the AI so the behaviors of their system will be indistinguishable from those of a human pilot.
“We believe we could eventually pass the Turing Test,” said Jean Oh, an associate research professor at CMU’s Robotics Institute (RI) and a member of the AI pilot team, referring to the test of an AI’s ability to exhibit intelligent behavior equivalent to a human.
To interact with other aircraft as a human pilot would, the AI uses both vision and natural language to communicate its intent with other aircraft, whether piloted or not. This behavior leads to safe and socially compliant navigation. Researchers achieved this implicit coordination by training the AI on data collected at the Allegheny County Airport and the Pittsburgh-Butler Regional Airport that included air traffic patterns, images of aircraft and radio transmissions.
The AI uses six cameras and a computer vision system to detect nearby aircraft in a manner similar to that of a human pilot. Its automatic speech recognition function uses natural language processing techniques to both understand incoming radio messages and communicate with pilots and air traffic controllers using speech.
Advancement in autonomous aircraft will broaden opportunities for drones, air taxis, helicopters and other aircraft to operate — moving people and goods, inspecting infrastructure, treating fields to protect crops, and monitoring for poaching or deforestation — often without a pilot behind the controls. These aircraft will have to fly, however, in an airspace already crowded with small airplanes, medical helicopters and more. More