Physicists work to shrink microchips with first one-dimensional helium model system
Physicists at Indiana University and the University of Tennessee have cracked the code to making microchips smaller, and the key is helium.
Microchips are everywhere, running computers and cars, and even helping people find lost pets. As microchips grow smaller, faster and capable of doing more things, the wires that conduct electricity to them must follow suit. But there’s a physical limit to how small they can become — unless they are designed differently.
“In a traditional system, as you put more transistors on, the wires get smaller,” said Paul Sokol, a professor in the IU Bloomington College of Arts and Sciences’ Department of Physics. “But under newly designed systems, it’s like confining the electrons in a one-dimensional tube, and that behavior is quite different from a regular wire.”
To study the behavior of particles under these circumstances, Sokol collaborated with a physics professor at the University of Tennessee, Adrian Del Maestro, to create a model system of electronics packed into a one-dimensional tube.
Their findings were recently published in Nature Communications.
The pair used helium to create a model system for their study because its interactions with electrons are well known, and it can be made extremely pure, Sokol said. However, there were issues with using helium in a one-dimensional space, the first being that no one had ever done it before. More