One particle on two paths: Quantum physics is right
The double-slit experiment is the most famous and probably the most important experiment in quantum physics: individual particles are shot at a wall with two openings, behind which a detector measures where the particles arrive. This shows that the particles do not move along a very specific path, as is known from classical objects, but along several paths simultaneously: each individual particle passes through both the left and the right opening.
Normally, however, this can only be proven by carrying out the experiment over and over again and evaluating the results of many particle detections at the end. At TU Wien, it has now been possible to develop a new variant of such a two-way interference experiment that can correct this flaw: A single neutron is measured at a specific position — and due to the sophisticated measurement setup, this single measurement proofs already that the particle moved along two different paths at the same time. It is even possible to determine the ratio in which the neutron was distributed between the two paths. Thus, the phenomenon of quantum superposition can be proven without having to resort to statistical arguments. The results have now been published in the journal “Physical Review Research.”
The double-slit experiment
“In the classical double-slit experiment, an interference pattern is created behind the double slit,” explains Stephan Sponar from the Atomic Institute at TU Wien. “The particles move as a wave through both openings at the same time, and the two partial waves then interfere with each other. In some places they reinforce each other, in other places they cancel each other out.”
The probability of measuring the particle behind the double slit at a very specific location depends on this interference pattern: where the quantum wave is amplified, the probability of measuring the particle is high. Where the quantum wave is cancelled out, the probability is low. Of course, this wave distribution cannot be seen by looking at a single particle. Only when the experiment is repeated many times does the wave pattern become increasingly recognisable point by point and particle by particle.
“So, the behaviour of individual particles is explained based on results that only become visible through the statistical investigation of many particles,” says Holger Hofmann from Hiroshima University, who developed the theory behind the experiment. “Of course, this is not entirely satisfactory. We have therefore considered how the phenomenon of two-way interference can be proven based on the detection of a single particle.”
Rotating the neutron More