More stories

  • in

    Quantum physics sets a speed limit to electronics

    Semiconductor electronics is getting faster and faster — but at some point, physics no longer permits any increase. The speed can definitely not be increased beyond one petahertz (one million gigahertz), even if the material is excited in an optimal way with laser pulses.
    How fast can electronics be? When computer chips work with ever shorter signals and time intervals, at some point they come up against physical limits. The quantum-mechanical processes that enable the generation of electric current in a semiconductor material take a certain amount of time. This puts a limit to the speed of signal generation and signal transmission.
    TU Wien (Vienna), TU Graz and the Max Planck Institute of Quantum Optics in Garching have now been able to explore these limits: The speed can definitely not be increased beyond one petahertz (one million gigahertz), even if the material is excited in an optimal way with laser pulses. This result has now been published in the scientific journal Nature Communications.
    Fields and currents
    Electric current and light (i.e. electromagnetic fields) are always interlinked. This is also the case in microelectronics: In microchips, electricity is controlled with the help of electromagnetic fields. For example, an electric field can be applied to a transistor, and depending on whether the field is switched on or off, the transistor either allows electrical current to flow or blocks it. In this way, an electromagnetic field is converted into an electrical signal.
    In order to test the limits of this conversion of electromagnetic fields to current, laser pulses — the fastest, most precise electromagnetic fields available — are used, rather than transistors.
    “Materials are studied that initially do not conduct electricity at all,” explains Prof. Joachim Burgdörfer from the Institute for Theoretical Physics at TU Wien. “These are hit by an ultra-short laser pulse with a wavelength in the extreme UV range. This laser pulse shifts the electrons into a higher energy level, so that they can suddenly move freely. That way, the laser pulse turns the material into an electrical conductor for a short period of time.” As soon as there are freely moving charge carriers in the material, they can be moved in a certain direction by a second, slightly longer laser pulse. This creates an electric current that can then be detected with electrodes on both sides of the material.
    These processes happen extremely fast, on a time scale of atto- or femtoseconds. “For a long time, such processes were considered instantaneous,” says Prof. Christoph Lemell (TU Wien). “Today, however, we have the necessary technology to study the time evolution of these ultrafast processes in detail.” The crucial question is: How fast does the material react to the laser? How long does the signal generation take and how long does one have to wait until the material can be exposed to the next signal? The experiments were carried out in Garching and Graz, the theoretical work and complex computer simulations were done at TU Wien.
    Time or energy — but not both
    The experiment leads to a classic uncertainty dilemma, as it often occurs in quantum physics: in order to increase the speed, extremely short UV laser pulses are needed, so that free charge carriers are created very quickly. However, using extremely short pulses implies that the amount of energy which is transferred to the electrons is not precisely defined. The electrons can absorb very different energies. “We can tell exactly at which point in time the free charge carriers are created, but not in which energy state they are,” says Christoph Lemell. “Solids have different energy bands, and with short laser pulses many of them are inevitably populated by free charge carriers at the same time.”
    Depending on how much energy they carry, the electrons react quite differently to the electric field. If their exact energy is unknown, it is no longer possible to control them precisely, and the current signal that is produced is distorted — especially at high laser intensities.
    “It turns out that about one petahertz is an upper limit for controlled optoelectronic processes,” says Joachim Burgdörfer. Of course, this does not mean that it is possible to produce computer chips with a clock frequency of just below one petahertz. Realistic technical upper limits are most likely considerably lower. Even though the laws of nature determining the ultimate speed limits of optoelectronics cannot be outsmarted, they can now be analyzed and understood with sophisticated new methods. More

  • in

    Simply printing high-performance perovskite-based transistors

    The printing press has contributed immensely to the advancement of humankind by elevating politics, economy, and culture to higher grounds. Today, it goes beyond simply printing books or documents, and is expanding its influence to the realm of cutting-edge technology. Most notably, high-performance components in various smart devices have been successfully printed and have attracted much attention. And now, a technology to print perovskite-based devices — considered a challenge until now — has been proposed.
    A POSTECH research team led by Professor Yong-Young Noh and Ph.D. candidates Ao Liu and Huihui Zhu (Department of Chemical Engineering), in collaboration with Professor Myung-Gil Kim (School of Advanced Materials Science and Engineering) of Sungkyunkwan University, has improved the performance of a p-type semiconductortransistor using inorganic metal halide perovskite. One of the biggest advantages of the new technology is that it enables solution-processed perovskite transistors to be simply printed as semiconductor-like circuits.
    Perovskite-based transistors control the current by combining p-type semiconductors that exhibit hole mobilities with n-type semiconductors. Compared to n-type semiconductors that have been actively studied so far, fabricating high-performance p-type semiconductors has been a challenge.
    Many researchers have tried to utilize perovskite in the p-type semiconductor for its excellent electrical conductivity, but its poor electrical performance and reproducibility have hindered commercialization.
    To overcome this issue, the researchers used the modified inorganic metal halidecaesium tin triiodide (CsSnI3) to develop the p-type perovskite semiconductor and fabricated the high-performance transistor based on this. This transistor exhibits high hole mobility of 50cm2V-1s-1 and higher and the current ratio of more than 108, and recorded the highest performance among the perovskite semiconductor transistors that have been developed so far.
    By making the material into a solution, the researchers succeeded in simply printing the p-type semiconductor transistor as if printing a document. This method is not only convenient but also cost-effective, which can lead to the commercialization of perovskite devices in the future.
    “The newly developed semiconductor material and transistor can be widely applicable as logic circuits in high-end displays and in wearable electronic devices, and also be used in stacked electronic circuits and optoelectronic devices by stacking them vertically with silicon semiconductors,” explained Professor Yong-Young Noh on the significance of the study.
    This study was conducted with the support from the Mid-Career Researcher Program, Creative Materials Discovery Program, Next-generation Intelligence-Type Semiconductor Development Program, and the Basic Research Lab Program of the National Research Foundation of Korea, and from Samsung Display Corporation.
    Story Source:
    Materials provided by Pohang University of Science & Technology (POSTECH). Note: Content may be edited for style and length. More

  • in

    Keeping the light from fading

    Scientists from Nara Institute of Science and Technology created a new approach to compensate for variations in illumination while scanning cathedral stained-glass windows. This work may be applied to other objects of cultural significance to help capture their colors in the most lifelike way.
    It’s hard to think of a more inspirational experience than watching the sun slowly set through historic stained-glass windows, such as those found in the cathedrals in Europe. While the changing light levels over time may be breathtaking, it also makes high-resolution scans of the windows more challenging. That is, if the scanning process requires minutes or even hours to complete, variations in the natural illumination can lead to inconsistent results.
    Now, a team of researchers led by Nara Institute of Science and Technology has developed a new calibration method to help compensate for changes in the sun’s illumination over the course of the scan. “It can take hours to capture thousands of spectral channels pixel by pixel. Thus, the measurement can be significantly affected by the perturbations in natural light,” first author Takuya Funatomi says.
    The researchers set out to capture hyperspectral images of the famous stained-glass windows in the Amiens Cathedral in France. With some window panels dating back to the 13th century, this location which has been designated as a UNESCO World Heritage Site. A whisk-broom scanner was used to acquire hyperspectral images. This kind of sensor uses a movable mirror to slowly scan across an object. Each pixel is measured one at a time as its light is reflected onto the single detector with the sky in the background. However, when it is applied to outdoor cultural heritages, temporal illumination variations become an issue due to the lengthy measurement time. Hyperspectral scanning is not limited to the wavelengths of light that are visible to humans. For this research, the team used a spectrometer that recorded more than 2,000 channels over a spectrum ranging from about 200 nm to 1100 nm, which includes ultraviolet, visible and infrared colors.
    An extra single column scan was added to help calibrate the images. Using matrix methods, variations in temporal illumination could be removed. This allowed for much more accurate results compared with simply normalizing the total brightness, because each color might be impacted differently by the changing light. “Our method provides a new modality for the digital preservation of large cultural assets,” senior author Yasuhiro Mukaigawa says. This method can be easily adapted to other situations in which outdoor scanning has to occur over long time periods.
    Story Source:
    Materials provided by Nara Institute of Science and Technology. Note: Content may be edited for style and length. More

  • in

    'Hot' spin quantum bits in silicon transistors

    Quantum bits (qubits) are the smallest units of information in a quantum computer. Currently, one of the biggest challenges in developing this kind of powerful computer is scalability. A research group at the University of Basel, working with the IBM Research Laboratory in Rüschlikon, has made a breakthrough in this area.
    Quantum computers promise unprecedented computing power, but to date prototypes have been based on just a handful of computing units. Exploiting the potential of this new generation of computers requires combining large quantities of qubits.
    It is a scalability problem which once affected classic computers, as well; in that case it was solved with transistors integrated into silicon chips. The research team led by Dr. Andreas Kuhlmann and Professor Dominik Zumbühl from the University of Basel has now come up with silicon-based qubits that are very similar in design to classic silicon transistors. The researchers published their findings in the journal Nature Electronics.
    Building on classic silicon technology
    In classic computers, the solution to the scalability problem lay in silicon chips, which today include billions of “fin field-effect transistors” (FinFETs). These FinFETs are small enough for quantum applications; at very low temperatures near absolute zero (0 kelvin or -273.15 degrees Celsius), a single electron with a negative charge or a “hole” with a positive charge can act as a spin qubit. Spin qubits store quantum information in the two states spin-up (intrinsic angular momentum up) and spin-down (intrinsic angular momentum down).
    The qubits developed by Kuhlmann’s team are based on FinFET architecture and use holes as spin qubits. In contrast with electron spin, hole spin in silicon nanostructures can be directly manipulated with fast electrical signals.
    Potential for higher operating temperatures
    Another major obstacle to scalability is temperature; previous qubit systems typically had to operate at an extremely low range of about 0.1 kelvin. Controlling each qubit requires additional measuring lines to connect the control electronics at room temperature to the qubits in the cryostat — a cooling unit which generates extremely low temperatures. The number of these measuring lines is limited because each line produces heat. This inevitably creates a bottleneck in the wiring, which in turn sets a limit to scaling.
    Circumventing this “wiring bottleneck” is one of the main goals of Kuhlmann’s research group, and requires measurement and control electronics to be built directly into the cooling unit. “However, integrating these electronics requires qubit operation at temperatures above 1 kelvin, with the cooling power of the cryostats increasing sharply to compensate for the heat dissipation of the control electronics,” explains Dr. Leon Camenzind of the Department of Physics at the University of Basel. Doctoral student Simon Geyer, who shares lead authorship of the study with Camenzind, adds, “We have overcome the 4 kelvin-mark with our qubits, reaching the boiling point of liquid helium. Here we can achieve much greater cooling power, which allows for integration of state-of-the-art cryogenic control technology.”
    Close to industry standards
    Working with proven technology such as FinFET architecture to build a quantum computer offers the potential for scaling up to very large numbers of qubits. “Our approach of building on existing silicon technology puts us close to industry practice,” says Kuhlmann. The samples were created at the Binnig and Rohrer Nanotechnology Center at the IBM Research Zurich laboratory in Rüschlikon, a partner of the NCCR SPIN, which is based at the University of Basel and counts the research team as a member.
    Story Source:
    Materials provided by https://www.unibas.ch/en.html. Note: Content may be edited for style and length. More

  • in

    Scientists shave ‘hairs’ off nanocrystals to improve their electronic properties

    You can carry an entire computer in your pocket today because the technological building blocks have been getting smaller and smaller since the 1950s. But in order to create future generations of electronics — such as more powerful phones, more efficient solar cells, or even quantum computers — scientists will need to come up with entirely new technology at the tiniest scales.
    One area of interest is nanocrystals. These tiny crystals can assemble themselves into many configurations, but scientists have had trouble figuring out how to make them talk to each other.
    A new study introduces a breakthrough in making nanocrystals function together electronically. Published March 25 in Science, the research may open the doors to future devices with new abilities.
    “We call these super atomic building blocks, because they can grant new abilities — for example, letting cameras see in the infrared range,” said University of Chicago Prof. Dmitri Talapin, the corresponding author of the paper. “But until now, it has been very difficult to both assemble them into structures and have them talk to each other. Now for the first time, we don’t have to choose. This is a transformative improvement.”
    In their paper, the scientists lay out design rules which should allow for the creation of many different types of materials, said Josh Portner, a Ph.D. student in chemistry and one of the first authors of the study.
    A tiny problem
    Scientists can grow nanocrystals out of many different materials: metals, semiconductors, and magnets will each yield different properties. But the trouble was that whenever they tried to assemble these nanocrystals together into arrays, the new supercrystals would grow with long “hairs” around them. More

  • in

    New Fermi arcs could provide a new path for electronics

    Newly discovered Fermi arcs that can be controlled through magnetism could be the future of electronics based on electron spins. These new Fermi arcs were discovered by a team of researchers from Ames Laboratory and Iowa State University, as well as collaborators from the United States, Germany, and the United Kingdom. During their investigation of the rare-earth monopnictide NdBi (neodymium-bismuth), the research team discovered a new type of Fermi arc that appeared at low temperatures when the material became antiferromagnetic, i.e., neighboring spins point in opposite directions.
    Fermi surfaces in metals are a boundary between energy states that are occupied and unoccupied by electrons. Fermi surfaces are normally closed contours forming shapes such as spheres, ovoids, etc. Electrons at the Fermi surface control many properties of materials such as electrical and thermal conductivity, optical properties, etc. In extremely rare occasions, the Fermi surface contains disconnected segments that are known as Fermi arcs and often are associated with exotic states like superconductivity.
    Adam Kaminski, leader of the research team, explained that newly discovered Fermi arcs are the result of electron band splitting, which results from the magnetic order of Nd atoms that make up 50% of the sample. However, the electron splitting that the team observed in NdBi was not typical band splitting behavior.
    There are two established types of band splitting, Zeeman and Rashba. In both cases the bands retain their original shape after splitting. The band splitting that the research team observed resulted in two bands of different shapes. As the temperature of the sample decreased, the separation between these bands increased and the band shapes changed, indicating a change in fermion mass.
    “This splitting is very, very unusual, because not only is the separation between those bands increasing, but they also change the curvature,” Kaminski said. “This is very different from anything else that people have observed to date.”
    The previously known cases of Fermi arcs in Weyl semimetals persist because they are caused by the crystal structure of the material which is difficult to control. However, the Fermi arcs that the team discovered in NdBi are induced by magnetic ordering of the Nd atoms in the sample. This order can be readily changed by applying a magnetic field, and possibly by changing the Nd ion for another rare earth ion such as Cerium, Praseodymium, or Samarium (Ce, Pr, or Sm). Since Ames Lab is a world leader in rare earth research, such changes in composition can be easily explored. More

  • in

    Physicists create extremely compressible 'gas of light'

    Researchers at the University of Bonn have created a gas of light particles that can be extremely compressed. Their results confirm the predictions of central theories of quantum physics. The findings could also point the way to new types of sensors that can measure minute forces. The study is published in the journal Science.
    If you plug the outlet of an air pump with your finger, you can still push its piston down. The reason: Gases are fairly easy to compress — unlike liquids, for example. If the pump contained water instead of air, it would be essentially impossible to move the piston, even with the greatest effort.
    Gases usually consist of atoms or molecules that swirl more or less quickly through space. It is quite similar with light: Its smallest building blocks are photons, which in some respect behave like particles. And these photons can also be treated as a gas, however, one that behaves somewhat unusually: You can compress it under certain conditions with almost no effort. At least that is what theory predicts.
    Photons in the mirror box
    Researchers from the Institute of Applied Physics (IAP) at the University of Bonn have now demonstrated this very effect in experiments for the first time. “To do this, we stored light particles in a tiny box made of mirrors,” explains Dr. Julian Schmitt of the IAP, who is a principal investigator in the group of Prof. Dr. Martin Weitz. “The more photons we put in there, the denser the photon gas became.”
    The rule is usually: The denser a gas, the harder it is to compress. This is also the case with the plugged air pump — at first the piston can be pushed down very easily, but at some point it can hardly be moved any further, even when applying a lot of force. The Bonn experiments were initially similar: The more photons they put into the mirror box, the more difficult it became to compress the gas. More

  • in

    Artificial neurons go quantum with photonic circuits

    In recent years, artificial intelligence has become ubiquitous, with applications such as speech interpretation, image recognition, medical diagnosis, and many more. At the same time, quantum technology has been proven capable of computational power well beyond the reach of even the world’s largest supercomputer. Physicists at the University of Vienna have now demonstrated a new device, called quantum memristor, which may allow to combine these two worlds, thus unlocking unprecedented capabilities. The experiment, carried out in collaboration with the National Research Council (CNR) and the Politecnico di Milano in Italy, has been realized on an integrated quantum processor operating on single photons. The work is published in the current issue of the journal Nature Photonics.
    At the heart of all artificial intelligence applications are mathematical models called neural networks. These models are inspired by the biological structure of the human brain, made of interconnected nodes. Just like our brain learns by constantly rearranging the connections between neurons, neural networks can be mathematically trained by tuning their internal structure until they become capable of human-level tasks: recognizing our face, interpreting medical images for diagnosis, even driving our cars. Having integrated devices capable of performing the computations involved in neural networks quickly and efficiently has thus become a major research focus, both academic and industrial.
    One of the major game changers in the field was the discovery of the memristor, made in 2008. This device changes its resistance depending on a memory of the past current, hence the name memory-resistor, or memristor. Immediately after its discovery, scientists realized that (among many other applications) the peculiar behavior of memristors was surprisingly similar to that of neural synapses. The memristor has thus become a fundamental building block of neuromorphic architectures.
    A group of experimental physicists from the University of Vienna, the National Research Council (CNR) and the Politecnico di Milano led by Prof. Philip Walther and Dr. Roberto Osellame, have now demonstrated that it is possible to engineer a device that has the same behavior as a memristor, while acting on quantum states and being able to encode and transmit quantum information. In other words, a quantum memristor. Realizing such device is challenging because the dynamics of a memristor tends to contradict the typical quantum behavior.
    By using single photons, i.e. single quantum particles of lights, and exploiting their unique ability to propagate simultaneously in a superposition of two or more paths, the physicists have overcome the challenge. In their experiment, single photons propagate along waveguides laser-written on a glass substrate and are guided on a superposition of several paths. One of these paths is used to measure the flux of photons going through the device and this quantity, through a complex electronic feedback scheme, modulates the transmission on the other output, thus achieving the desired memristive behavior. Besides demonstrating the quantum memristor, the researchers have provided simulations showing that optical networks with quantum memristor can be used to learn on both classical and quantum tasks, hinting at the fact that the quantum memristor may be the missing link between artificial intelligence and quantum computing.
    “Unlocking the full potential of quantum resources within artificial intelligence is one of the greatest challenges of the current research in quantum physics and computer science,” says Michele Spagnolo, who is first author of the publication in the journal “Nature Photonics.” The group of Philip Walther of the University of Vienna has also recently demonstrated that robots can learn faster when using quantum resources and borrowing schemes from quantum computation. This new achievement represents one more step towards a future where quantum artificial intelligence become reality.
    Story Source:
    Materials provided by University of Vienna. Note: Content may be edited for style and length. More