Brain-based computing chips not just for AI anymore
With the insertion of a little math, Sandia National Laboratories researchers have shown that neuromorphic computers, which synthetically replicate the brain’s logic, can solve more complex problems than those posed by artificial intelligence and may even earn a place in high-performance computing.
The findings, detailed in a recent article in the journal Nature Electronics, show that neuromorphic simulations employing the statistical method called random walks can track X-rays passing through bone and soft tissue, disease passing through a population, information flowing through social networks and the movements of financial markets, among other uses, said Sandia theoretical neuroscientist and lead researcher James Bradley Aimone.
“Basically, we have shown that neuromorphic hardware can yield computational advantages relevant to many applications, not just artificial intelligence to which it’s obviously kin,” said Aimone. “Newly discovered applications range from radiation transport and molecular simulations to computational finance, biology modeling and particle physics.”
In optimal cases, neuromorphic computers will solve problems faster and use less energy than conventional computing, he said.
The bold assertions should be of interest to the high-performance computing community because finding capabilities to solve statistical problems is of increasing concern, Aimone said.
“These problems aren’t really well-suited for GPUs [graphics processing units], which is what future exascale systems are likely going to rely on,” Aimone said. “What’s exciting is that no one really has looked at neuromorphic computing for these types of applications before.”
Sandia engineer and paper author Brian Franke said, “The natural randomness of the processes you list will make them inefficient when directly mapped onto vector processors like GPUs on next-generation computational efforts. Meanwhile, neuromorphic architectures are an intriguing and radically different alternative for particle simulation that may lead to a scalable and energy-efficient approach for solving problems of interest to us.” More