New approach transports trapped ions to create entangling gates
Trapped ions excited with a laser beam can be used to create entangled qubits in quantum information systems, but addressing several stationary pairs of ions in a trap requires multiple optical switches and complex controls. Now, scientists at the Georgia Tech Research Institute (GTRI) have demonstrated the feasibility of a new approach that moves trapped ion pairs through a single laser beam, potentially reducing power requirements and simplifying the system.
In a paper scheduled to be published January 31 in the journal Physical Review Letters, the researchers describe implementing two-qubit entangling gates by moving calcium ions held in a surface electrode trap through a stationary bichromatic optical beam. Maintaining a constant Doppler shift during the ion movement required precise control of the timing.
“We’ve shown that ion transport is an interesting tool that can be applied in unique ways to produce an entangled state using fine control over the ion transport,” said Holly Tinkey, a GTRI research scientist who led the study. “Most ion trap experiments have some control over the motion of the ions, so what we have shown is that we can potentially integrate that existing transport into quantum logic operations.”
Measurements showed that the entangled quantum state of the two qubits transported through the optical beam had a fidelity comparable to entangled states produced by stationary gates performed in the same trapping system. The experiment used an optical qubit transition between an electronic ground state and a metastable state of 40Ca+ ions within a surface trap, a setup which allowed both one-qubit and two-qubit gates to be performed using a single beam.
The researchers moved the pair of trapped ions by precisely varying the electrical confinement fields in the trap by controlling the voltages applied to adjacent electrodes. The ions themselves have an electrical charge, a property which makes them subject to the changing electrical fields around them.
“We perform some interactions where the ions are trapped together in a single potential well and where they are very close and can interact, but then we sometimes want to separate them to do something distinct to one ion that we don’t want to do to the other ion,” Tinkey explained. More