More stories

  • in

    A new map shows where carbon needs to stay in nature to avoid climate disaster

    Over decades, centuries and millennia, the steady skyward climb of redwoods, the tangled march of mangroves along tropical coasts and the slow submersion of carbon-rich soil in peatlands has locked away billions of tons of carbon. 

    If these natural vaults get busted open, through deforestation or dredging of swamplands, it would take centuries before those redwoods or mangroves could grow back to their former fullness and reclaim all that carbon. Such carbon is “irrecoverable” on the timescale — decades, not centuries — needed to avoid the worst impacts of climate change, and keeping it locked away is crucial.

    Now, through a new mapping project, scientists have estimated how much irrecoverable carbon resides in peatlands, mangroves, forests and elsewhere around the globe — and which areas need protection.

    The new estimate puts the total amount of irrecoverable carbon at 139 gigatons, researchers report November 18 in Nature Sustainability. That’s equivalent to about 15 years of human carbon dioxide emissions at current levels. And if all that carbon were released, it’s almost certainly enough to push the planet past 1.5 degrees Celsius of warming above preindustrial levels.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    “This is the carbon we must protect to avert climate catastrophe,” says Monica Noon, an environmental data scientist at Conservation International in Arlington, Va. Current efforts to keep global warming below the ambitious target of 1.5 degrees C require that we reach net-zero emissions by 2050, and that carbon stored in nature stays put (SN:12/17/18). But agriculture and other development pressures threaten some of these carbon stores.

    To map this at-risk carbon, Noon and her colleagues combined satellite data with estimates of how much total carbon is stored in ecosystems vulnerable to human incursion. The researchers excluded areas like permafrost, which stores lots of carbon but isn’t likely to be developed (although it’s thawing due to warming), as well as tree plantations, which have already been altered (SN: 9/25/19). The researchers then calculated how much carbon would get released from land conversions, such as clearing a forest for farmland. 

    That land might store varying amounts of carbon, depending on whether it becomes a palm oil plantation or a parking lot. To simplify, the researchers assumed cleared land was left alone, with saplings free to grow where giants once stood. That allowed the researchers to estimate how long it might take for the released carbon to be reintegrated into the land. Much of that carbon would remain in the air by 2050, the team reports, as many of these ecosystems take centuries to return to their former glory, rendering it irrecoverable on a timescale that matters for addressing climate change.

    Releasing that 139 gigatons of irrecoverable carbon could have irrevocable consequences. For comparison, the United Nations’ Intergovernmental Panel on Climate Change estimates that humans can emit only 109 more gigatons of carbon to have a two-thirds chance of keeping global warming below 1.5 degrees C. “These are the places we absolutely have to protect,” Noon says.

    Approximately half of this irrecoverable carbon sits on just 3.3 percent of Earth’s total land area, equivalent to roughly the area of India and Mexico combined. Key areas are in the Amazon, the Pacific Northwest, and the tropical forests and mangroves of Borneo. “The fact that it’s so concentrated means we can protect it,” Noon says.

    Roughly half of irrecoverable carbon already falls within existing protected areas or lands managed by Indigenous peoples. Adding an additional 8 million square kilometers of protected area, which is only about 5.4 percent of the planet’s land surface, would bring 75 percent of this carbon under some form of protection, Noon says.

    “It’s really important to have spatially explicit maps of where these irrecoverable carbon stocks are,” says Kate Dooley, a geographer at the University of Melbourne in Australia who wasn’t involved in the study. “It’s a small percentage globally, but it’s still a lot of land.” Many of these dense stores are in places at high risk of development, she says. 

    “It’s so hard to stop this drive of deforestation,” she says, but these maps will help focus the efforts of governments, civil society groups and academics on the places that matter most for the climate. More

  • in

    Bacteria may be key to sustainably extracting earth elements for tech

    Rare earth elements from ore are vital for modern life but refining them after mining is costly, harms the environment and mostly occurs abroad.
    A new study describes a proof of principle for engineering a bacterium, Gluconobacter oxydans, that takes a big first step towards meeting skyrocketing rare earth element demand in a way that matches the cost and efficiency of traditional thermochemical extraction and refinement methods and is clean enough to meet U.S. environmental standards.
    “We’re trying to come up with an environmentally friendly, low-temperature, low-pressure method for getting rare earth elements out of a rock,” said Buz Barstow, the paper’s senior author and an assistant professor of biological and environmental engineering at Cornell University.
    The elements — of which there are 15 in the periodic table — are necessary for everything from computers, cell phones, screens, microphones, wind turbines, electric vehicles and conductors to radars, sonars, LED lights and rechargeable batteries.
    While the U.S. once refined its own rare earth elements, that production stopped more than five decades ago. Now, refinement of these elements takes place almost entirely in other countries, particularly China.
    “The majority of rare earth element production and extraction is in the hands of foreign nations,” said co-author Esteban Gazel, associate professor of earth and atmospheric sciences at Cornell. “So for the security of our country and way of life, we need to get back on track to controlling that resource.”
    To meet U.S. annual needs for rare earth elements, roughly 71.5 million tonnes (~78.8 million tons) of raw ore would be required to extract 10,000 kilograms (~22,000 pounds) of elements. More

  • in

    This eco-friendly glitter gets its color from plants, not plastic

    All that glitters is not green. Glitter and shimmery pigments are often made using toxic compounds or pollutive microplastics (SN: 4/15/19). That makes the sparkly stuff, notoriously difficult to clean up in the house, a scourge on the environment too.

    A new, nontoxic, biodegradable alternative could change that. In the material, cellulose — the main building block of plant cell walls — creates nanoscale patterns that give rise to vibrant structural colors (SN: 9/28/21). Such a material could be used to make eco-friendly glitter and shiny pigments for paints, cosmetics or packaging, researchers report November 11 in Nature Materials.

    The inspiration to harness cellulose came from the African plant Pollia condensata, which produces bright, iridescent blue fruits called marble berries. Tiny patterns of cellulose fibers in the berries’ cell walls reflect specific wavelengths of light to create the signature hue. “I thought, if the plants can make it, we should be able to make it,” says chemist Silvia Vignolini of the University of Cambridge. 

    Vignolini and colleagues whipped up a watery mixture containing cellulose fibers and poured it onto plastic. As the liquid dried into a film, the rodlike fibers settled into helical structures resembling spiral staircases. Tweaking factors such as the steepness of those staircases changed which wavelengths of light the cellulose arrangements reflected, and therefore the color of the film.

    That allowed the researchers, like fairy-tale characters spinning straw into gold, to transform their clear, plant-based slurry into meter-long shimmery ribbons in a rainbow of colors. These swaths could then be peeled off their plastic platform and ground up to make glitter.

    This gleaming ribbon contains tiny arrangements of eco-friendly cellulose that reflect light in specific ways to give the material its color.Benjamin Drouguet

    “You can use any type of cellulose,” Vignolini says. Her team used cellulose from wood pulp, but could have used fruit peels or cotton fibers left over from textile production.

    The researchers need to test the environmental impacts of their newfangled glitter. But Vignolini is optimistic that materials using such natural ingredients have a bright future. More

  • in

    Exploding and weeping ceramics provide path to new shape-shifting material

    An international team of researchers from the University of Minnesota Twin Cities and Kiel University in Germany have discovered a path that could lead to shape-shifting ceramic materials. This discovery could improve everything from medical devices to electronics.
    The research is published open access in Nature, the world’s leading multidisciplinary science journal.
    Anyone who has ever dropped a coffee cup and watched it break into several pieces, knows that ceramics are brittle. Subject to the slightest deformation, they shatter. However, ceramics are used for more than just dishes and bathroom tiles, they are used in electronics because, depending on their composition, they may be semiconducting, superconducting, ferroelectric, or insulating. Ceramics are also non corrosive and used in making a wide variety of products, including spark plugs, fiber optics, medical devices, space shuttle tiles, chemical sensors, and skis.
    On the other end of the materials spectrum are shape memory alloys. They are some of the most deformable or reshapable materials known. Shape memory alloys rely on this tremendous deformability when functioning as medical stents, the backbone of a vibrant medical device industry both in the Twin Cities area and in Germany.
    The origin of this shape-shifting behavior is a solid-to-solid phase transformation. Different from the process of crystallization-melting-recrystallization, crystalline solid-solid transitions take place solely in the solid state. By changing temperature (or pressure), a crystalline solid can be transformed into another crystalline solid without entering a liquid phase.
    In this new research, the route to producing a reversible shape memory ceramic was anything but straightforward. The researchers first tried a recipe that has worked for the discovery of new metallic shape memory materials. That involves a delicate tuning of the distances between atoms by compositional changes, so that the two phases fit together well. They implemented this recipe, but, instead of improving the deformability of the ceramic, they observed that some specimens exploded when they passed through the phase transformation. Others gradually fell apart into a pile of powder, a phenomenon they termed “weeping.”
    With yet another composition, they observed a reversible transformation, easily transforming back and forth between the phases, much like a shape memory material. The mathematical conditions under which reversible transformation occurs can be applied widely and provide a way forward toward the paradoxical shape-memory ceramic. More

  • in

    Shape-morphing microrobots deliver drugs to cancer cells

    Chemotherapy successfully treats many forms of cancer, but the side effects can wreak havoc on the rest of the body. Delivering drugs directly to cancer cells could help reduce these unpleasant symptoms. Now, in a proof-of-concept study, researchers reporting in ACS Nano made fish-shaped microrobots that are guided with magnets to cancer cells, where a pH change triggers them to open their mouths and release their chemotherapy cargo.
    Scientists have previously made microscale (smaller than 100 µm) robots that can manipulate tiny objects, but most can’t change their shapes to perform complex tasks, such as releasing drugs. Some groups have made 4D-printed objects (3D-printed devices that change shape in response to certain stimuli), but they typically perform only simple actions, and their motion can’t be controlled remotely. In a step toward biomedical applications for these devices, Jiawen Li, Li Zhang, Dong Wu and colleagues wanted to develop shape-morphing microrobots that could be guided by magnets to specific sites to deliver treatments. Because tumors exist in acidic microenvironments, the team decided to make the microrobots change shape in response to lowered pH.
    So the researchers 4D printed microrobots in the shape of a crab, butterfly or fish using a pH-responsive hydrogel. By adjusting the printing density at certain areas of the shape, such as the edges of the crab’s claws or the butterfly’s wings, the team encoded pH-responsive shape morphing. Then, they made the microrobots magnetic by placing them in a suspension of iron oxide nanoparticles.
    The researchers demonstrated various capabilities of the microrobots in several tests. For example, a fish-shaped microrobot had an adjustable “mouth” that opened and closed. The team showed that they could steer the fish through simulated blood vessels to reach cancer cells at a specific region of a petri dish. When they lowered the pH of the surrounding solution, the fish opened its mouth to release a chemotherapy drug, which killed nearby cells. Although this study is a promising proof of concept, the microrobots need to be made even smaller to navigate actual blood vessels, and a suitable imaging method needs to be identified to track their movements in the body, the researchers say.
    The authors acknowledge funding from the National Natural Science Foundation of China, the National Key R&D Program of China, Major Scientific and Technological Projects in Anhui Province, the Fundamental Research Funds for the Central Universities, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the Hong Kong Research Grants Council, CAS-Croucher Funding Scheme for Joint Laboratories, the Hong Kong Special Administrative Region of the People’s Republic of China Innovation and Technology Commission and the Multi-scale Medical Robotics Center.
    Story Source:
    Materials provided by American Chemical Society. Note: Content may be edited for style and length. More

  • in

    New holographic camera sees the unseen with high precision

    Northwestern University researchers have invented a new high-resolution camera that can see the unseen — including around corners and through scattering media, such as skin, fog or potentially even the human skull.
    Called synthetic wavelength holography, the new method works by indirectly scattering coherent light onto hidden objects, which then scatters again and travels back to a camera. From there, an algorithm reconstructs the scattered light signal to reveal the hidden objects. Due to its high temporal resolution, the method also has potential to image fast-moving objects, such as the beating heart through the chest or speeding cars around a street corner.
    The study will be published on Nov. 17 in the journal Nature Communications.
    The relatively new research field of imaging objects behind occlusions or scattering media is called non-line-of-sight (NLoS) imaging. Compared to related NLoS imaging technologies, the Northwestern method can rapidly capture full-field images of large areas with submillimeter precision. With this level of resolution, the computational camera could potentially image through the skin to see even the tiniest capillaries at work.
    While the method has obvious potential for noninvasive medical imaging, early-warning navigation systems for automobiles and industrial inspection in tightly confined spaces, the researchers believe potential applications are endless.
    “Our technology will usher in a new wave of imaging capabilities,” said Northwestern’s Florian Willomitzer, first author of the study. “Our current sensor prototypes use visible or infrared light, but the principle is universal and could be extended to other wavelengths. For example, the same method could be applied to radio waves for space exploration or underwater acoustic imaging. It can be applied to many areas, and we have only scratched the surface.”
    Willomitzer is a research assistant professor of electrical and computer engineering at Northwestern’s McCormick School of Engineering. Northwestern co-authors include Oliver Cossairt, associate professor of computer science and electrical and computer engineering, and former Ph.D. student Fengqiang Li. The Northwestern researchers collaborated closely with Prasanna Rangarajan, Muralidhar Balaji and Marc Christensen, all researchers at Southern Methodist University. More

  • in

    Physicists reveal non-reciprocal flow around the quantum world

    Physicists from Exeter and Zaragoza have created a theory describing how non-reciprocity can be induced at the quantum level, paving the way for non-reciprocal transport in the next generation of nanotechnology.
    A pair of theoretical physicists, from the University of Exeter (United Kingdom) and the University of Zaragoza (Spain), have developed a quantum theory explaining how to engineer non-reciprocal flows of quantum light and matter. The research may be important for the creation of quantum technologies which require the directional transfer of energy and information at small scales.
    Reciprocity, going the same way backward as forward, is a ubiquitous concept in physics. A famous example may be found in Newton’s Law: for every action there is an equal and opposite reaction. The breakdown of such a powerful notion as reciprocity in any area of physics, from mechanics to optics to electromagnetism, is typically associated with surprises which can be exploited for technological application. For example, a nonreciprocal electric diode allows current to pass in forwards but not backwards and forms a building block of the microelectronics industry.
    In their latest research, Downing and Zueco provide a quantum theory of non-reciprocal transport around a triangular cluster of strongly interacting quantum objects. Inspired by the physics of quantum rings, they show that by engineering an artificial magnetic field one may tune the direction of the energy flow around the cluster. The theory accounts for strong particle interactions, such that directionality appears at a swathe of energies, and considers the pernicious effect of dissipation for the formation of non-reciprocal quantum currents.
    The research may be useful in the development of quantum devices requiring efficient, directional transportation, as well for further studies of strongly interacting quantum phases, synthetic magnetic fields and quantum simulators.
    Charles Downing from the University of Exeter explains: “Our calculations provide insight into how one may instigate directional transport in closed nanoscopic lattices of atoms and photons with strong interactions, which may lead to the development of novel devices of a highly directional character.”
    “Non-reciprocal population dynamics in a quantum trimer” is published in Proceedings of the Royal Society A, a historic journal which has been publishing scientific research since 1905.
    Story Source:
    Materials provided by University of Exeter. Note: Content may be edited for style and length. More

  • in

    Artificial intelligence successfully predicts protein interactions

    UT Southwestern and University of Washington researchers led an international team that used artificial intelligence (AI) and evolutionary analysis to produce 3D models of eukaryotic protein interactions. The study, published in Science, identified more than 100 probable protein complexes for the first time and provided structural models for more than 700 previously uncharacterized ones. Insights into the ways pairs or groups of proteins fit together to carry out cellular processes could lead to a wealth of new drug targets.
    “Our results represent a significant advance in the new era in structural biology in which computation plays a fundamental role,” said Qian Cong, Ph.D., Assistant Professor in the Eugene McDermott Center for Human Growth and Development with a secondary appointment in Biophysics.
    Dr. Cong led the study with David Baker, Ph.D., Professor of Biochemistry and Dr. Cong’s postdoctoral mentor at the University of Washington prior to her recruitment to UT Southwestern. The study has four co-lead authors, including UT Southwestern Computational Biologist Jimin Pei, Ph.D.
    Proteins often operate in pairs or groups known as complexes to accomplish every task needed to keep an organism alive, Dr. Cong explained. While some of these interactions are well studied, many remain a mystery. Constructing comprehensive interactomes — or descriptions of the complete set of molecular interactions in a cell — would shed light on many fundamental aspects of biology and give researchers a new starting point on developing drugs that encourage or discourage these interactions. Dr. Cong works in the emerging field of interactomics, which combines bioinformatics and biology.
    Until recently, a major barrier for constructing an interactome was uncertainty over the structures of many proteins, a problem scientists have been trying to solve for half a century. In 2020 and 2021, a company called DeepMind and Dr. Baker’s lab independently released two AI technologies called AlphaFold (AF) and RoseTTAFold (RF) that use different strategies to predict protein structures based on the sequences of the genes that produce them.
    In the current study, Dr. Cong, Dr. Baker, and their colleagues expanded on those AI structure-prediction tools by modeling many yeast protein complexes. Yeast is a common model organism for fundamental biological studies. To find proteins that were likely to interact, the scientists first searched the genomes of related fungi for genes that acquired mutations in a linked fashion. They then used the two AI technologies to determine whether these proteins could be fit together in 3D structures. More