More stories

  • in

    Producing novel liquid crystals by stacking antiaromatic units

    Whereas π-stacking systems involving aromatic compounds are quite common, those made from antiaromatic units are rare. In a recent study, researchers from Japan developed modified norcorrole molecules whose side chains favored the formation of columnar π-stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.
    In organic chemistry, π-stacking systems are supramolecular structures that arise due to the dispersion force, a type of intermolecular noncovalent interaction. They are a common occurrence in nature; the stabilized structure of DNA is a very prominent example of a π-stacking system, and so are the arrangement of amino acids in certain proteins. Interestingly, π-stacking can be leveraged in the design of materials with useful electronic and optical properties. These include organic semiconductors of various kinds, as well as conjugated polymers for sensing and biomedical applications.
    Thus far, a good portion of technologically relevant π-stacking system has been limited to aromatic compounds, which have inherent π-electron clouds. On the other hand, antiaromatic compounds, though promising candidates for developing electric conductors, have been scarcely reported as the building units of π-stacking systems.
    Surprisingly, in a recent study, a research team led by Professor Hiromitsu Maeda from Ritsumeikan University, Japan, reported a novel antiaromatic π-stacking system that enabled the formation of a highly conductive liquid crystal. Their findings were published on April 16, 2024, in the journal Chemical Science. Worth noting, this paper was co-authored by Prof. Go Watanabe from Kitasato University, Prof. Shu Seki from Kyoto University, and Prof. Hiroshi Shinokubo from Nagoya University.
    The reported compounds in question are NiII-coordinated norcorroles with modified aryl moieties as side chains. Previously, achieving π-stacking in similar norcorroles failed because hydrogen-bonding interactions between the side chains opposed the face-to-face stacking of the planar antiaromatic units. This time, however, the research team had an ingenious idea. “We hypothesized that the introduction of side interacting moieties with less directionality would enhance the stacking between norcorrole units,” explains Prof. Maeda. “Thus, we attempted the simple introduction of aliphatic chains, which induce van der Waals interactions. These interactions can be effective for modulating the stacking structure of a material,” adds Prof. Maeda.
    As evidenced through various experiments and molecular dynamics simulations, the proposed strategy worked as intended. The norcorrole units formed columnar structures through the stacking of arrangements known as ‘triple-decker.’ In these arrangements, a planarized molecule is sandwiched between two slightly bowl-shaped molecules.
    Using the proposed molecular design, the researchers then synthesized liquid crystals. Thanks to the triple-decker stacking, a liquid crystal exhibited remarkable electricconductivity as well as thermotropicity; that is, an order parameter that depends on temperature. “The control of molecular interactions based on molecular design and synthesis, as demonstrated in our study, will be crucial for future applications,” remarks Prof. Maeda. “Properties such as high electric conductivity in liquid crystals may be used for the fabrication of electronic devices. In addition, stimuli-responsive behaviors in soft materials can be used to modulate relevant properties, like photoluminescence, according to pressure and temperature,” explains Prof. Maeda.
    Taken together, the findings of this study bring to light a promising strategy for designing new compounds based on molecular assemblies of antiaromatic units. With any luck, this will open up new avenues for materials design, ultimately leading to better organic electronics, optoelectronics, and sensing devices. More

  • in

    Finding the beat of collective animal motion

    Across nature, animals from swarming insects to herding mammals can organize into seemingly choreographed motion. Over the last two decades, scientists have discovered that these coordinated movements arise from each animal following simple rules about where their neighbors are located. Now, scientists studying zebrafish have shown that neighbors might also be moving to the same beat. The team revealed that fish swimming in pairs took turns to move; and, they synchronized the timing of these movements in a two-way process known as reciprocity. Then, in virtual reality experiments, the team could confirm that reciprocity was key to driving collective motion: by implementing this rhythmic rule, they could recreate natural schooling behavior in fish and virtual conspecifics. The study published in Nature Communications was led by scientists from the Cluster of Excellence Collective Behaviour at the University of Konstanz and the Max Planck Institute of Animal Behavior in Germany (MPI-AB).
    The results provide further mechanistic detail to our understanding of how animals self-organize into moving collectives. “We show that it takes two fish to tango,” says first author Guy Amichay, who conducted the work while a doctoral student at MPI-AB. “Fish are coordinating the timing of their movements with that of their neighbor, and vice versa. This two-way rhythmic coupling is an important, but overlooked, force that binds animals in motion.”
    The synchrony of the swarm
    Animals moving in synchrony are the most conspicuous examples of collective behavior in nature; yet many natural collectives synchronize not in space, but in time — fireflies synchronize their flashes, neurons synchronize their firing, and humans in concert halls synchronize the rhythm of clapping.
    Amichay and the team were interested in the intersection of the two; they were curious to see what rhythmic synchrony might exist in animal movement. “There’s more rhythm to animal movement than you might expect,” says Amichay, who is now a postdoctoral researcher at Northwestern University, USA. “In the real world most fish don’t swim at fixed speeds, they oscillate.”
    Using pairs of zebrafish as a study system, Amichay analyzed their swimming to describe the precise pattern of motion. He found that fish, although moving together, did not swim at the same time. Rather they alternated such that one moved, then the other moved, “like two legs walking,” he says.
    The team then looked into how fish managed to alternate. They generated a computational model with a simple rule of thumb: double the delay of your neighbor.

    The rule of reciprocity
    The next step was to test this model computationally, or in silico. They set one agent to beat with fixed movement bouts, like a metronome. The other agent responded to the first by implementing the ‘double the delay’ rhythmic rule. But in this one-way interaction, the agents did not move in the alternating pattern seen in real fish. When both agents responded to each other, however, they reproduced the natural alternation pattern. “This was the first indication that reciprocity was crucial,” says Amichay.
    But reproducing natural behavior in a computer was not where the study ended. The team turned to virtual reality to confirm that the principle they uncovered would also work in real fish. “Virtual reality is a revolutionary tool in animal behavior studies because it allows us to circumvent the curse of causality,” says Iain Couzin, a Speaker at the Cluster of Excellence Collective Behaviour at the University of Konstanz and a Director at MPI-AB.
    In nature many traits are linked and so it is extremely difficult to pinpoint the cause of an animal’s behavior. But using virtual reality, Couzin says it is possible to “precisely perturb the system” to test the effect of a particular trait on an animal’s behavior.
    A single fish was put into a virtual environment with a fish avatar. In some trials the avatar was set to swim like a metronome, ignoring the behavior of the real fish. In these trials the real fish did not swim in the natural alternating pattern with the avatar. But when the avatar was set to respond to the real fish, in a two-way reciprocal relationship, they recovered its natural alternating behavior.
    Turn-taking partners
    “It’s fascinating to see that reciprocity is driving this turn-taking behavior in swimming fish,” says co-author Máté Nagy, who leads the MTA-ELTE Collective Behavior Research Group at the Hungarian Academy of Sciences, “because it’s not always the case in biological oscillators.” Fireflies, for example, will synchronize even in one-way interactions.

    “But for humans, reciprocity comes into play in almost anything we do in pairs, be it dance, or sport, or conversation,” says Nagy.
    The team also provided evidence that fish that were coupled in the timing of movements had stronger social bonds. “In other words, if you and I are coupled, we are more attuned to each other,” says Nagy.
    The authors say that this finding can drastically change how we understand who influences whom in animal groups. “We used to think that in a busy group, a fish could be influenced by any other member that it can see,” says Couzin. “Now, we see that the most salient bonds could be between partners that choose to rhythmically synchronize.” More

  • in

    New discoveries about the nature of light could improve methods for heating fusion plasma

    Both literally and figuratively, light pervades the world. It banishes darkness, conveys telecommunications signals between continents and makes visible the invisible, from faraway galaxies to the smallest bacterium. Light can also help heat the plasma within ring-shaped devices known as tokamaks as scientists worldwide strive to harness the fusion process to generate green electricity.
    Now, scientists have made discoveries about light particles known as photons that could aid the quest for fusion energy. By performing a series of mathematical calculations, the researchers found that one of a photon’s basic properties is topological, meaning that it doesn’t change even as the photon moves through different materials and environments.
    This property is polarization, the direction — left or right — that electric fields take as they move around a photon. Because of basic physical laws, a photon’s polarization helps determine the direction the photon travels and limits its movement. Therefore, a beam of light made up of only photons with one type of polarization cannot spread into every part of a given space. These findings demonstrate the Princeton Plasma Physics Laboratory’s (PPPL) strengths in theoretical physics and fusion research.
    “Having a more accurate understanding of the fundamental nature of photons could lead to scientists designing better light beams for heating and measuring plasma,” said Hong Qin, a principal research physicist at the U.S. Department of Energy’s (DOE) PPPL and co-author of apaper reporting the results in Physical Review D.
    Simplifying a complicated problem
    Though the researchers were studying individual photons, they were doing so as a way to solve a larger, more difficult problem — how to use beams of intense light to excite long-lasting perturbations in the plasma that could help maintain the high temperatures needed for fusion.
    Known as topological waves, these wiggles often occur on the border of two different regions, like plasma and the vacuum in tokamaks at its outer edge. They are not especially exotic — they occur naturally in Earth’s atmosphere, where they help produce El Niño, a gathering of warm water in the Pacific Ocean that affects weather in North and South America. To produce these waves in plasma, scientists must have a greater understanding of light — specifically, the same sort of radio-frequency wave used in microwave ovens — which physicists already use to heat plasma. With greater understanding comes the greater possibility of control.

    “We are trying to find similar waves for fusion,” said Qin. “They are not easily stopped, so if we could create them in plasma, we could increase the efficiency of plasma heating and help create the conditions for fusion.” The technique resembles ringing a bell. Just as using a hammer to hit a bell causes the metal to move in such a way that it creates sound, the scientists want to strike plasma with light so it wiggles in a certain way to create sustained heat.
    Solving a problem by simplifying it happens throughout science. “If you’re learning to play a song on the piano, you don’t start by trying to play the whole song at full speed,” said Eric Palmerduca, a graduate student in the Princeton Program in Plasma Physics, which is based at PPPL, and lead author of the paper. “You start playing it at a slower tempo; you break it into small parts; maybe you learn each hand separately. We do this all the time in science — breaking a bigger problem up into smaller problems, solving them one or two at a time, and then putting them back together to solve the big problem.”
    Turn, turn, turn
    In addition to discovering that a photon’s polarization is topological, the scientists found that the spinning motion of photons could not be separated into internal and external components. Think of Earth: It both spins on its axis, producing day and night, and orbits the sun, producing the seasons. These two types of motion typically do not affect each other; for instance, Earth’s rotation around its axis does not depend on its revolution around the sun. In fact, the turning motion of all objects with mass can be separated this way.
    But scientists have not been so sure about particles like photons, which do not have mass. “Most experimentalists assume that the angular momentum of light can be split into spin and orbital angular momentum,” said Palmerduca. “However, among theorists, there has been a long debate about the correct way to do this splitting or whether it is even possible to do this splitting. Our work helps settle this debate, showing that the angular momentum of photons cannot be split into spin and orbital components.”
    Moreover, Palmerduca and Qin established that the two movement components can’t be split because of a photon’s topological, unchanging properties, like its polarization. This novel finding has implications for the laboratory. “These results mean that we need a better theoretical explanation of what is going on in our experiments,” Palmerduca said.

    All of these findings about photons give the researchers a clearer picture of how light behaves. With a greater understanding of light beams, they hope to figure out how to create topological waves that could be helpful for fusion research.
    Insights for theoretical physics
    Palmerduca notes that the photon findings demonstrate PPPL’s strengths in theoretical physics. The findings relate to a mathematical result known as the Hairy Ball Theorem. “The theorem states that if you have a ball covered with hairs, you can’t comb all the hairs flat without creating a cowlick somewhere on the ball. Physicists thought this implied that you could not have a light source that sends photons in all directions at the same time,” Palmerduca said. He and Qin found, however, that this is not correct because the theorem does not take into account, mathematically, that photon electric fields can rotate.
    The findings also amend research by former Princeton University Professor of Physics Eugene Wigner, who Palmerduca described as one of the most important theoretical physicists of the 20th century. Wigner realized that using principles derived from Albert Einstein’s theory of relativity, he could describe all the possible elementary particles in the universe, even those that hadn’t been discovered yet. But while his classification system is accurate for particles with mass, it produces inaccurate results for massless particles, like photons. “Qin and I showed that using topology,” Palmerduca said, “we can modify Wigner’s classification for massless particles, giving a description of photons that works in all directions at the same time.”
    A clearer understanding for the future
    In future research, Qin and Palmerduca plan to explore how to create beneficial topological waves that heat plasma without making unhelpful varieties that siphon the heat away. “Some deleterious topological waves can be excited unintentionally, and we want to understand them so that they can be removed from the system,” Qin said. “In this sense, topological waves are like new breeds of insects. Some are beneficial for the garden, and some of them are pests.”
    Meanwhile, they are excited about the current findings. “We have a clearer theoretical understanding of the photons that could help excite topological waves,” Qin said. “Now it’s time to build something so we can use them in the quest for fusion energy.”
    This research was funded by the DOE award DE-AC02-09CH11466.
    PPPL is mastering the art of using plasma — the fourth state of matter — to solve some of the world’s toughest science and technology challenges. More

  • in

    Two real-world tests of quantum memories bring a quantum internet closer to reality

    In the quest to build a quantum internet, scientists are putting their memories to the test. Quantum memories, that is.

    Quantum memories are devices that store fragile information in the realm of the very small. They’re an essential component for scientists’ vision of quantum networks that could allow new types of communication, from ultra-secure messaging to linking up far-flung quantum computers (SN: 6/28/23). Such memories would help scientists establish quantum connections, or entanglement, throughout a network (SN: 2/12/20). More

  • in

    Wearable devices get signal boost from innovative material

    A new material that moves like skin while preserving signal strength in electronics could enable the development of next-generation wearable devices with continuous, consistent wireless and battery-free functionality.
    According to a study published in Nature, an international team of researchers from Rice University and Hanyang University developed the material by embedding clusters of highly dielectric ceramic nanoparticles into an elastic polymer. The material was reverse-engineered to not only mimic skin elasticity and motion types, but also to adjust its dielectric properties to counter the disruptive effects of motion on interfacing electronics, minimize energy loss and dissipate heat.
    “Our team was able to combine simulations and experiments to understand how to design a material that can seamlessly deform like skin and change the way electrical charges distribute inside it when it is stretched so as to stabilize radio-frequency communication,” said Raudel Avila, assistant professor of mechanical engineering at Rice and a lead author on the study. “In a way, we are carefully engineering an electrical response to a mechanical event.”
    Avila, who was responsible for conducting simulations to help identify the right choice of materials and design, explained that electronic devices use radio frequency (RF) elements like antennas to send and receive electromagnetic waves.
    “If you have ever been in a place with poor cellular reception or a very spotty Wi-Fi signal, you probably understand the frustration of weak signals,” Avila said. “When we’re trying to communicate information, we work at specific frequencies: Two antennas communicating with each other do so at a given frequency. So we need to ensure that that frequency does not change so that communication remains stable. The challenge of achieving this in systems designed to be mobile and flexible is that any change or transformation in the shape of those RF components causes a frequency shift, which means you’ll experience signal disruption.”
    The nanoparticles embedded in the substrate served to counteract these disruptions, with a key design element being the intentional pattern of their distribution. Both the distance between the particles and the shape of their clusters played a critical role in stabilizing the electrical properties and resonant frequency of the RF components.
    “The clustering strategy is very important, and it would take a lot longer to figure out how to go about it through experimental observations alone,” Avila said.

    Sun Hong Kim, a former research associate from Hanyang and now a postdoctoral researcher at Northwestern University, pointed out that the research team took a creative approach to solving the problem of RF signal stability in stretchable electronics.
    “Unlike previous studies that focused on electrode materials or design, we focused on the design of a high-dielectric nanocomposite for the substrate where the wireless device is located,” Kim said, highlighting the importance of collaboration across three different fields of expertise for developing “such a multidimensional solution to a complex problem.”
    “We believe that our technology can be applied to various fields such as wearable medical devices, soft robotics and thin and light high-performance antennas,” said Abdul Basir, a former research associate from Hanyang and now a postdoctoral researcher at Tampere University in Finland.
    Wearable technologies are having a profound impact on health care, enabling new forms of individual monitoring, diagnosis and care. Smart wear market predictions reflect the transformative potential of these technologies with health and fitness owning the largest share in terms of end use.
    “Wireless skin-integrated stretchable electronics play a key role in health emergencies, e-health care and assistive technologies,” Basir added.
    To test whether the material could support the development of effective wearable technologies, the researchers built several stretchable wireless devices, including an antenna, a coil and a transmission line, and evaluated their performance both on the substrate they developed and on a standard elastomer without the added ceramic nanoparticles.

    “When we put the electronics on the substrate and then we stretch or bend it, we see that the resonant frequency of our system remains stable,” Avila said. “We showed that our system supports stable wireless communication at a distance of up to 30 meters (~98 feet) even under strain. With a standard substrate, the system completely loses connectivity.”
    The wireless working distance of the far-field communication system exceeds that of any other similar skin-interfaced system. Moreover, the new material could be used to enhance wireless connectivity performance in a variety of wearable platforms designed to fit various body parts in a wide range of sizes.
    For instance, the researchers developed wearable bionic bands to be worn on the head, knee, arm or wrist to monitor health data across the body, including electroencephalogram (EEG) and electromyogram (EMG) activity, knee motion and body temperature. The headband, which was shown could stretch up to 30% when worn on the head of a toddler and up to 50% on the head of an adult, successfully transmitted real-time EEG measurements at a wireless distance of 30 meters.
    “Skin-interfaced stretchable RF devices that can seamlessly conform to skin morphology and monitor key physiological signals require critical design of the individual material layouts and the electronic components to yield mechanical and electrical properties and performance that do not disrupt a user’s experience,” Avila said. “As wearables continue to evolve and influence the way society interacts with technology, particularly in the context of medical technology, the design and development of highly efficient stretchable electronics become critical for stable wireless connectivity.” More

  • in

    New AI accurately predicts fly behavior

    We’ve been told, “The eyes are the window to the soul.” Well, windows work two ways. Our eyes are also our windows to the world. What we see and how we see it help determine how we move through the world. In other words, our vision helps guide our actions, including social behaviors. Now, a young Cold Spring Harbor Laboratory (CSHL) scientist has uncovered a major clue into how this works. He did it by building a special AI model of the common fruit fly brain.
    CSHL Assistant Professor Benjamin Cowley and his team honed their AI model through a technique they developed called “knockout training.” First, they recorded a male fruit fly’s courtship behavior — chasing and singing to a female. Next, they genetically silenced specific types of visual neurons in the male fly and trained their AI to detect any changes in behavior. By repeating this process with many different visual neuron types, they were able to get the AI to accurately predict how the real fruit fly would act in response to any sight of the female.
    “We can actually predict neural activity computationally and ask how specific neurons contribute to behavior,” Cowley says. “This is something we couldn’t do before.”
    With their new AI, Cowley’s team discovered that the fruit fly brain uses a “population code” to process visual data. Instead of one neuron type linking each visual feature to one action, as previously assumed, many combinations of neurons were needed to sculpt behavior. A chart of these neural pathways looks like an incredibly complex subway map and will take years to decipher. Still, it gets us where we need to go. It enables Cowley’s AI to predict how a real-life fruit fly will behave when presented with visual stimuli.
    Does this mean AI could someday predict human behavior? Not so fast. Fruit fly brains contain about 100,000 neurons. The human brain has almost 100 billion.
    “This is what it’s like for the fruit fly. You can imagine what our visual system is like, ” says Cowley, referring to the subway map.
    Still, Cowley hopes his AI model will someday help us decode the computations underlying the human visual system.
    “This is going to be decades of work. But if we can figure this out, we’re ahead of the game,” says Cowley. “By learning [fly] computations, we can build a better artificial visual system. More importantly, we’re going to understand disorders of the visual system in much better detail.”
    How much better? You’ll have to see it to believe it. More

  • in

    New weapon against dementia

    Nearly 100,000 Danes over the age of 65 and more than 55 million people around the world live with dementia-related disorders such as Alzheimer’s and Parkinson’s. These diseases arise when some of the smallest building blocks in the body clump together and destroy vital functions. Why this occurs and how to treat it remains a scientific mystery. Until now, studying the phenomenon has been very challenging and limited due to an absence of the right tools.
    Now, researchers from the Hatzakis lab at the University of Copenhagen’s Department of Chemistry have invented a machine learning algorithm that can track clumping under the microscope in real-time. The algorithm can automatically map and track the important characteristics of the clumped-up building blocks that cause Alzheimer’s and other neurodegenerative disorders. Until now, doing so has been impossible.
    “In just minutes, our algorithm solves a challenge that would take researchers several weeks. That it will now be easier to study microscopic images of clumping proteins will hopefully contribute to our knowledge, and in the long term, lead to new therapies for neurodegenerative brain disorders,” says PhD Jacob Kæstel-Hansen from the Department of Chemistry, who, alongside Nikos Hatzakis, led the research team behind the algorithm.
    Microscopic proteins detected in no time
    The coming together and exchange of compounds and signals among proteins and other molecules occurs billions of times within our cells in natural processes that allow our bodies function. But when errors occur, proteins can clump together in ways that interfere with their ability to work as intended. Among other things, this can lead to neurodegenerative disorders in the brain and cancer.
    The researchers’ machine learning algorithm can spot protein clumps down to a billionth of a meter in microscopy images. At the same time, the algorithm can count and then group clumps according to their shapes and sizes, all while tracking their development over time. The appearance of clumps can have a major impact on their function and how they behave in the body, for better or worse.
    “When studying clumps through a microscope, one quickly sees, for example, that some are rounder, while others have filamentous structures. And, their exact shape can vary depending on the disorder they trigger. But to sit and count them manually many thousands of times takes a very long time, which could be better spent on other things,” says Steen Bender from the Department of Chemistry, the article’s first author.

    In the future, the algorithm will make it much easier to learn more about why clumps form so that we can develop new drugs and therapies to combat these disorders.
    “The fundamental understanding of these clumps depends on us being able to see, track and quantify them, and describe what they look like over time. No other methods can currently do so automatically and as effectively,” he says.
    Tools are freely available to everyone
    The Department of Chemistry researchers are in now in full swing using the tool to conduct experiments with insulin molecules. As insulin molecules clump, their ability to regulate our blood sugar weakens.
    “We see this undesirable clumping in insulin molecules as well. Our new tool can let us see how these clumps are affected by whatever compounds we add. In this way, the model can help us work towards understanding how to potentially stop or transform them into less dangerous or more stable clumps,” explains Jacob Kæstel-Hansen.
    Thus, the researchers see great potential in being able to use the tool to develop new drugs once the microscopic building blocks have been clearly identified. The researchers hope that their work will kickstart the gathering of more comprehensive knowledge about the shapes and functions of proteins and molecules.
    “As other researchers around the world begin to deploy the tool, it will help create a large library of molecule and protein structures related to various disorders and biology in general. This will allow us to better understand diseases and try to stop them,” concludes Nikos Hatzakis from the Department of Chemistry.
    The algorithm is freely available on the internet as open source and can be used by scientific researchers and anyone else working to understand the clumping of proteins and other molecules.
    The research was conducted by: Steen W.B. Bender, Marcus W. Dreisler, Min Zhang, Jacob Kæstel-Hansen and Nikos S. Hatzakis from the Department of Chemistry with support from the Novo Nordisk Foundation Center for Optimised Oligo Escape and Control of Disease. More

  • in

    Flexible film senses nearby movements — featured in blink-tracking glasses

    I’m not touching you! When another person’s finger hovers over your skin, you may get the sense that they’re touching you, feeling not necessarily contact, but their proximity. Similarly, researchers reporting in ACS Applied Materials & Interfaces have designed a soft, flexible film that senses the presence of nearby objects without physically touching them. The study features the new sensor technology to detect eyelash proximity in blink-tracking glasses.
    Noncontact sensors can identify or measure an object without directly touching it. Examples of these devices include infrared thermometers and vehicle proximity notification systems. One type of noncontact sensor relies on static electricity to detect closeness and small motions, and has the potential to enhance smart devices, such as allowing phone screens to recognize more finger gestures. So far, however, they’ve been limited in what types of objects get detected, how long they stay charged and how hard they are to fabricate. So, Xunlin Qiu, Yiming Wang, Fuzhen Xuan and coworkers wanted to create a flexible static electricity-based sensor that overcame these problems.
    The researchers began by simply fabricating a three-part system: fluorinated ethylene propylene (FEP) for the top sensing layer, with an electrically conductive film and flexible plastic base for the middle and bottom layers, respectively. FEP is an electret, a type of material that’s electrically charged and produces an external electrostatic field, similar to the way a magnet produces a magnetic field. Then they electrically charged the FEP-based sensor making it ready for use.
    As objects approached the FEP surface, their inherent static charge caused an electrical current to flow in the sensor, thereby “feeling” the object without physical contact. The resulting clear and flexible sensor detected objects — made of glass, rubber, aluminum and paper — that were nearly touching it but not quite, from 2 to 20 millimeters (less than an inch) away. The sensor held its charge for over 3,000 different approach-withdraw cycles over almost two hours.
    In a demonstration of the new sensing film, the researchers attached it to the inner side of an eyeglass lens. When worn by a person, the glasses noticed the approach of eyelashes and identified when the wearer blinked Morse code for “E C U S T,” the abbreviation for the researchers’ institution. In the future, the researchers say their noncontact sensors could be used to help people who are unable to speak or use sign language communicate or even detect drowsiness when driving.
    The authors acknowledge funding from Natural Science Foundation of China Grants, Shanghai Pilot Program for Basic Research, the “Chenguang Program” supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, National Key Research and Development Program of China, Natural Science Foundation of Shanghai, and the Open Project of State Key Laboratory of Chemical Engineering. More