New type of magnetism unveiled in an iconic material
Scientists have made a path-breaking discovery in strontium ruthenate — with potential for new applications in quantum electronics.
Since the discovery of superconductivity in Sr2RuO4 in 1994, hundreds of studies have been published on this compound, which have suggested that Sr2RuO4 is a very special system with unique properties. These properties make Sr2RuO4 a material with great potential, for example, for the development of future technologies including superconducting spintronics and quantum electronics by virtue of its ability to carry lossless electrical currents and magnetic information simultaneously. An international research team led by scientists at the University of Konstanz has been now able to answer one of the most interesting open questions on Sr2RuO4: why does the superconducting state of this material exhibit some features that are typically found in materials known as ferromagnets, which are considered being antagonists to superconductors? The team has found that Sr2RuO4 hosts a new form of magnetism, which can coexist with superconductivity and exists independently of superconductivity as well. The results have been published in the current issue of Nature Communications.
After a research study that lasted several years and involved 26 researchers from nine different universities and research institutions, the missing piece of the puzzle seems to have been found. Alongside the University of Konstanz, the universities of Salerno, Cambridge, Seoul, Kyoto and Bar Ilan as well as the Japan Atomic Energy Agency, the Paul Scherrer Institute and the Centro Nazionale delle Ricerche participated in the study.
So far not the right tool to find evidence
“Despite decades of research on Sr2RuO4, there had been no evidence for the existence of this unusual type of magnetism in this material. A few years ago, however, we wondered if the reconstruction that happens in this material on the surface, where the crystal structure exhibits some small changes at the atomic scale level, could also lead to an electronic ordering with magnetic properties. Following this intuition, we realized that this question had probably not been addressed because nobody had used the “right tool” to find evidence for this magnetism, which we thought could be extremely weak and only limited to a few atomic layers from the surface of the material” states the leader of this international research study, Professor Angelo Di Bernardo from the University of Konstanz, whose research focuses on superconducting spintronic and quantum devices based on innovative materials.
To carry out the experiment, the team used high-quality single crystals of Sr2RuO4 prepared by the group of Dr Antonio Vecchione from the Centro Nazionale delle Ricerche (CNR) Spin in Salerno. “Making large crystals of Sr2RuO4 without any impurities was a big challenge albeit crucial for the success of the experiment, since defects would have given a signal similar to the magnetic signal which we were hunting,” says Dr Vecchione. More