More stories

  • in

    Researchers demonstrate technique for recycling nanowires in electronics

    Researchers at North Carolina State University demonstrated a low-cost technique for retrieving nanowires from electronic devices that have reached the end of their utility and then using those nanowires in new devices. The work is a step toward more sustainable electronics.
    “There is a lot of interest in recycling electronic materials because we want to both reduce electronic waste and maximize the use we get out of rare or costly materials,” says Yuxuan Liu, first author of a paper on the work and a Ph.D. student at NC State. “We’ve demonstrated an approach that allows us to recycle nanowires, and that we think could be extended to other nanomaterials — including nanomaterials containing noble and rare-earth elements.”
    “Our recycling technique differs from conventional recycling,” says Yong Zhu, corresponding author of the paper and the Andrew A. Adams Distinguished Professor of Mechanical and Aerospace Engineering at NC State. “When you think about recycling a glass bottle, it is completely melted down before being used to create another glass object. In our approach, a silver nanowire network is separated from the rest of the materials in a device. That network is then disassembled into a collection of separate silver nanowires in solution. Those nanowires can then be used to create a new network and incorporated into a new sensor or other devices.”
    The new recycling technique takes into account the entire life cycle of a device. The first step is to design devices using polymers that are soluble in solvents that will not also dissolve the nanowires. Once a device has been used, the polymer matrix containing the silver nanowires is dissolved, leaving behind the nanowire network. The network is then placed in a separate solvent and hit with ultrasound. This disperses the nanowires, separating them out of the network.
    In a proof-of-concept demonstration, the researchers created a wearable health sensor patch that could be used to track a patient’s temperature and hydration. The sensor consisted of silver nanowire networks embedded in a polymer material. The researchers tested the sensors to ensure that they were fully functional. Once used, a sensor patch is normally discarded.
    But for their demonstration, the researchers dissolved the polymer in water, removed the nanowire network, broke it down into a collection of individual nanowires, and then used those nanowires to create a brand-new wearable sensor. While there was minor degradation in the properties of the nanowire network after each “life cycle,” the researchers found that the nanowires could be recycled four times without harming the sensor’s performance. More

  • in

    New cybersecurity technique keeps hackers guessing

    Army researchers developed a new machine learning-based framework to enhance the security of computer networks inside vehicles without undermining performance.
    With the widespread prevalence of modern automobiles that entrust control to onboard computers, this research looks toward to a larger Army effort to invest in greater cybersecurity protection measures for its aerial and land platforms, especially heavy vehicles.
    In collaboration with an international team of experts from Virginia Tech, the University of Queensland and Gwangju Institute of Science and Technology, researchers at the U.S. Army Combat Capabilities Development Command, known as DEVCOM, Army Research Laboratory devised a technique called DESOLATOR to help optimize a well-known cybersecurity strategy known as the moving target defense.
    “The idea is that it’s hard to hit a moving target,” said Dr. Terrence Moore, Army mathematician. “If everything is static, the adversary can take their time looking at everything and choosing their targets. But if you shuffle the IP addresses fast enough, then the information assigned to the IP quickly becomes lost, and the adversary has to look for it again.”
    DESOLATOR, which stands for deep reinforcement learning-based resource allocation and moving target defense deployment framework, helps the in-vehicle network identify the optimal IP shuffling frequency and bandwidth allocation to deliver effective, long-term moving target defense.
    According to Army computer scientist and program lead Dr. Frederica Free-Nelson, achievement of the former keeps uncertainty high enough to thwart potential attackers without it becoming too costly to maintain, while attainment of the latter prevents slowdowns in critical areas of the network with high priority.
    “This level of fortification of prioritized assets on a network is an integral component for any kind of network protection,” Nelson said. “The technology facilitates a lightweight protection whereby fewer resources are used for maximized protection. The utility of fewer resources to protect mission systems and connected devices in vehicles while maintaining the same quality of service is an added benefit.”
    The research team used deep reinforcement learning to gradually shape the behavior of the algorithm based on various reward functions, such as exposure time and the number of dropped packets, to ensure that DESOLATOR took both security and efficiency into equal consideration.
    “Existing legacy in-vehicle networks are very efficient, but they weren’t really designed with security in mind,” Moore said. “Nowadays, there’s a lot of research out there that looks solely at either enhancing performance or enhancing security. Looking at both performance and security is in itself a little rare, especially for in-vehicle networks.”
    In addition, DESOLATOR is not limited to identifying the optimal IP shuffling frequency and bandwidth allocation. Since this approach exists as a machine learning-based framework, other researchers can modify the technique to pursue different goals within the problem space.
    “This ability to retool the technology is very valuable not only for extending the research but also marrying the capability to other cyber capabilities for optimal cybersecurity protection,” Nelson said.
    Story Source:
    Materials provided by U.S. Army Research Laboratory. Note: Content may be edited for style and length. More

  • in

    A stunning visualization of Alaska’s Yukon Delta shows a land in transition

    The westward journey of the mighty Yukon River takes it from its headwaters in Canada’s British Columbia straight across Alaska. The river has many stories to tell, of generations of Indigenous people hunting on its banks and fishing in its waters, of paddle-wheeled boats and gold panning and pipelines.

    Where it meets the Bering Sea, the river fans out into an intricate delta resembling cauliflower lobes of river channels and ponds. The delta has a story to tell, too — that of an increasingly green Arctic.

    A composite image of the delta’s northern lobe, taken May 29 by the U.S. Geological Survey’s Landsat 8 satellite, shows willow shrublands lining river channels as they wind toward the sea. Farther inland, tussock grasses carpet the tundra. Grasslike sedge meadows populate low-lying wetlands, punctuated by ponds left behind by springtime floods along the riverbanks from snow and ice that have melted upstream.

    In southern Alaska, such as in the Kenai Peninsula, the Arctic has been getting noticeably greener since the 1980s, as global temperatures climb (SN: 4/11/19). Researchers observed this change using satellite measurements of red and near-infrared light reflected off the vegetation. Now, analyses of changing vegetation in the Yukon Delta and nearby Kuskokwim Delta show that more northern areas are getting greener too, researchers report June 1 in Earth Interactions.

    The increasing prevalence of tall willows, an important moose habitat, is one sign of these changes in the delta. Moose populations, too, are on the rise. But for the Yukon and other Arctic deltas — where higher floodwaters due to climate change are likely to deposit thicker sediment piles, supporting more greenery — many more changes are likely to come as the planet warms.  More

  • in

    New organ-on-a-chip finds crucial interaction between blood, ovarian cancer tumors

    In the evolving field of cancer biology and treatment, innovations in organ-on-a-chip microdevices allow researchers to discover more about the disease outside the human body. These organs-on-chips serve as a model of the state an actual cancer patient is in, thus allowing an opportunity to finding the correct treatment before administering it to the patient. At Texas A&M University, researchers are pushing these devices to new levels that could change the way clinicians approach cancer treatment, particularly ovarian cancer.
    The team has recently submitted a patent disclosure with the Texas A&M Engineering Experiment Station.
    “We claim several novelties in technological design as well as biological capabilities that didn’t exist in prior organs-on-chips,” said Dr. Abhishek Jain, lead researcher and assistant professor in the Department of Biomedical Engineering.
    Jain also has a joint appointment in the College of Medicine at Texas A&M.
    Jain’s device — the ovarian tumor microenvironment-chip (OTME-Chip) — focuses on platelets, tiny blood cells that help the body form clots to stop bleeding. The microdevice, about the size of a USB, models the properties of a tumor in the lab. Researchers then can recreate events within platelets circulating in the blood as they approach the tumor and make it more potent and metastatic.
    “We are creating a platform technology using the organ-on-a-chip approach where tumor biology can be advanced, and new drugs can be identified by recreating the platelet-tumor and platelet-tumor-drug interactions under the influence of flow, supporting blood vessels and the extracellular matrix,” Jain said. More

  • in

    Topology in biology

    When can we say that a certain property of a system is robust? Intuitively, robustness implies that, even under the effect of external perturbations on the system, no matter how strong or random, said property remains unchanged. In mathematics, properties of an object that are robust against deformations are called topological. For example, the letters s, S, and L can be transformed into each other by stretching or bending their shape. The same holds true for letters o, O, and D. However, it is impossible to turn an S into an O without a discontinuous operation, such as cutting the O apart or sticking the two ends of the S together. Therefore, we say that the letters s, S and L have the same topology — as do the letters o, O and D — whereas the two groups of letters have different topologies. But how does topology relate to biology?
    “During the last decades, physicists have discovered that certain properties of quantum systems depend only on the topology of some underlying feature of the system, such as the phase of its wave function or its energy spectrum” explains Evelyn Tang, co-first author of the study. “We wanted to know if this model can also be applied to biochemical systems to better describe and understand processes out of equilibrium.” As topology is insensitive to continuous perturbations — like the stretching or bending of letters in the example above — properties linked to topology are extremely robust. They will remain unchanged unless a qualitative change to the system occurs, such as cutting apart or sticking together the letters above. The scientists Evelyn Tang, Jaime Agudo-Canalejo and Ramin Golestanian now demonstrated that the same concept of topological protection may be found in biochemical systems, which ensures the robustness of the corresponding biochemical processes.
    Flowing along the edges
    One of the most famous observations regarding topology in quantum systems is the quantum Hall effect: This phenomenon occurs when a two-dimensional conducting material is subjected to a perpendicular magnetic field. In such a setting, the electrons in the material begin to move in tiny circles known as cyclotron orbits, which overall do not lead to any net current in the bulk of the material. However, at the material’s edges, the electrons will bounce off before completing an orbit, and effectively move in the opposite direction, resulting in a net flow of electrons along these edges. Importantly, this edge flow will occur independently of the shape of the edges, and will persist even if the edges are strongly deformed, highlighting the topological and thus robust nature of the effect.
    The researchers noticed a parallel between such cyclotron orbits in the quantum Hall effect and an observation in biochemical systems termed “futile cycles”: directed reaction cycles that consume energy but are useless, at least at first sight. For example, a chemical A may get converted to B, which gets converted to C, which subsequently gets converted back to A. This raised the question: is it possible that, like for cyclotron orbits in the quantum Hall effect, futile cycles can cause edge currents resulting in a net flow in a two-dimensional biochemical reaction network?
    The authors thus modelled biochemical processes that occur in a two-dimensional space. One simple example are the assembly dynamics of a biopolymer that is composed of two different subunits X and Y: A clockwise futile cycle would then correspond to adding a Y subunit, adding an X subunit, removing a Y subunit, and removing an X subunit, which would bring the system back to the initial state. Now, such a two-dimensional space will also have “edges,” representing constraints in the availability of subunits. As anticipated, the researchers found that counterclockwise currents along these edges would indeed arise spontaneously. Jaime Agudo-Canalejo, co-first author of the study, explains: “In this biochemical context, edge currents correspond to large-scale cyclic oscillations in the system. In the example of a biopolymer, they would result in a cycle in which first all X subunits in the system are added to the polymer, followed by all Y subunits, then first all X and finally all Y subunits are again removed, so the cycle is completed.”
    The power of topology
    Like in the quantum Hall system, these biochemical edge currents appear robust to changes in the shape of the system’s boundaries or to disorder in the bulk of the system. Thus the researchers aimed to investigate whether topology indeed sits at the heart of this robustness. However, the tools used in quantum systems are not directly applicable to biochemical systems, which underlie classical, stochastic laws. To this end, the researchers devised a mapping between their biochemical system and an exotic class of systems known as non-Hermitian quantum systems. Evelyn Tang, who has a background in topological quantum matter, recalls: “Once this mapping was established, the whole toolbox of topological quantum systems became available to us. We could then show that, indeed, edge currents are robust thanks to topological protection. Moreover, we found that the emergence of edge currents is inextricably linked to the out-of-equilibrium nature of the futile cycles, which are driven by energy consumption.”
    A new realm of possibilities
    The robustness arising from topological protection, coupled to the versatility inherently present in biochemical networks, results in a multitude of phenomena that can be observed in these systems. Examples include an emergent molecular clock that can reproduce some features of circadian systems, dynamical growth and shrinkage of microtubules (proteins of the cell skeleton) and spontaneous synchronization between two or more systems that are coupled through a shared pool of resources. Ramin Golestanian, co-author of the study and Director of the Department of Living Matter Physics at MPI-DS, is optimistic for the future: “Our study proposes, for the first time, minimal biochemical systems in which topologically-protected edge currents can arise. Given the wealth of biochemical networks that exists in biology, we believe it is only a matter of time until examples are found in which topological protection sensitively control the operations in such systems.” More

  • in

    Researchers develop tool to drastically speed up the study of enzymes

    For much of human history, animals and plants were perceived to follow a different set of rules than the rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.
    Scientists now understand that these transformations are powered by enzymes — protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation — and all of the chemical events that happen in every one of our cells — that, left alone, would happen extraordinarily slowly.
    “A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes,” said Polly Fordyce, an assistant professor of bioengineering and of genetics at Stanford University.
    While much is now known about enzymes, including their structures and the chemical groups they use to facilitate reactions, the details surrounding how their forms connect to their functions, and how they pull off their biochemical wizardry with such extraordinary speed and specificity are still not well understood.
    A new technique, developed by Fordyce and her colleagues at Stanford and detailed this week in the journal Science, could help change that. Dubbed HT-MEK — short for High-Throughput Microfluidic Enzyme Kinetics — the technique can compress years of work into just a few weeks by enabling thousands of enzyme experiments to be performed simultaneously. “Limits in our ability to do enough experiments have prevented us from truly dissecting and understanding enzymes,” said study co-leader Dan Herschlag, a professor of biochemistry at Stanford’s School of Medicine.
    By allowing scientists to deeply probe beyond the small “active site” of an enzyme where substrate binding occurs, HT-MEK could reveal clues about how even the most distant parts of enzymes work together to achieve their remarkable reactivity. More

  • in

    Smartphone screens effective sensors for soil or water contamination

    The touchscreen technology used in billions of smartphones and tablets could also be used as a powerful sensor, without the need for any modifications.
    Researchers from the University of Cambridge have demonstrated how a typical touchscreen could be used to identify common ionic contaminants in soil or drinking water by dropping liquid samples on the screen, the first time this has been achieved. The sensitivity of the touchscreen sensor is comparable to typical lab-based equipment, which would make it useful in low-resource settings.
    The researchers say their proof of concept could one day be expanded for a wide range of sensing applications, including for biosensing or medical diagnostics, right from the phone in your pocket. The results are reported in the journal Sensors and Actuators B.
    Touchscreen technology is ubiquitous in our everyday lives: the screen on a typical smartphone is covered in a grid of electrodes, and when a finger disrupts the local electric field of these electrodes, the phone interprets the signal.
    Other teams have used the computational power of a smartphone for sensing applications, but these have relied on the camera or peripheral devices, or have required significant changes to be made to the screen.
    “We wanted to know if we could interact with the technology in a different way, without having to fundamentally change the screen,” said Dr Ronan Daly from Cambridge’s Institute of Manufacturing, who co-led the research. “Instead of interpreting a signal from your finger, what if we could get a touchscreen to read electrolytes, since these ions also interact with the electric fields?”
    The researchers started with computer simulations, and then validated their simulations using a stripped down, standalone touchscreen, provided by two UK manufacturers, similar to those used in phones and tablets. More

  • in

    Gaming graphics card allows faster, more precise control of fusion energy experiments

    Nuclear fusion offers the potential for a safe, clean and abundant energy source.
    This process, which also occurs in the sun, involves plasmas, fluids composed of charged particles, being heated to extremely high temperatures so that the atoms fuse together, releasing abundant energy.
    One challenge to performing this reaction on Earth is the dynamic nature of plasmas, which must be controlled to reach the required temperatures that allow fusion to happen. Now researchers at the University of Washington have developed a method that harnesses advances in the computer gaming industry: It uses a gaming graphics card, or GPU, to run the control system for their prototype fusion reactor.
    The team published these results May 11 in Review of Scientific Instruments.
    “You need this level of speed and precision with plasmas because they have such complex dynamics that evolve at very high speeds. If you cannot keep up with them, or if you mispredict how plasmas will react, they have a nasty habit of going in the totally wrong direction very quickly,” said co-author Chris Hansen, a UW senior research scientist in the aeronautics and astronautics department.
    “Most applications try to operate in an area where the system is pretty static. At most all you have to do is ‘nudge’ things back in place,” Hansen said. “In our lab, we are working to develop methods to actively keep the plasma where we want it in more dynamic systems.”
    The UW team’s experimental reactor self-generates magnetic fields entirely within the plasma, making it potentially smaller and cheaper than other reactors that use external magnetic fields. More