More stories

  • in

    Virtual reality as pain relief: Reducing dressing change pain in pediatric burn patients

    According to the American Burn Association, burn injuries affect approximately 250,000 children in the United States each year. The pain associated with burn injuries extends beyond the injury itself; there is also significant pain from dressing changes, which can be exacerbated by the anxiety of anticipating this additional pain.
    Although opioids relieve burn injury-related pain, they have serious adverse side effects. Prior studies have investigated alternative approaches to pain reduction in burn injury patients that focus on distraction, such as music, hypnosis, toys, and virtual reality (VR).
    In a study published today in JAMA Network Open, Henry Xiang, MD, MPH, PhD, MBA, and his research team reported the use of smartphone-based VR games during dressing changes in pediatric patients with burn injuries. “The smartphone-based VR game was very effective in reducing patient-reported pain,” says Dr. Xiang, a professor of pediatrics and epidemiology at Nationwide Children’s Hospital and director of the Center for Pediatric Trauma Research.
    In the pilot study, designed as a randomized clinical trial, the research team divided 90 children, aged 6 to 17 years, into three treatment groups: active VR, passive VR, and standard care (e.g., toys, tablet). These patients, most with second-degree burns, received outpatient care for burn injuries between December 2016 and January 2019.
    The VR game, called “Virtual River Cruise,” was designed specifically for the study by Nationwide Children’s Research Information Solutions and Innovation department. “Two factors were considered for the game’s design,” explains Dr. Xiang. “The first factor was a snow, cooling environment within the game. The second factor was cognitive processing to encourage active engagement.”
    Patients played the game using a smartphone and a headset. During dressing changes, which lasted approximately 5 to 6 minutes, patients in the active VR group actively engaged with the game; to stay still while playing the game, the patients tilted their head to aim a target, notes Dr. Xiang. Patients in the passive VR group only watched the game.
    Along with their caregivers, patients reported their perceived pain and subjective experience with the game in post-intervention surveys. Nurses evaluated the game’s clinical utility.
    Among the three treatment groups, patients in the active VR group had the lowest overall pain scores. Most patients and their caregivers reported a positive experience with the game, calling it “fun, engaging, and realistic.”
    Nurses considered the game to be clinically useful in the outpatient setting. Previously, computer-based games were used during dressing changes. However, the computers’ bulkiness was not clinically practical. “Smartphones are easy to use, and most families have them,” said Dr. Xiang.
    Given the VR games’ ease of use and demonstrated effectiveness at reducing pain during burn dressing changes, Dr. Xiang believes the game can also be played at home to relieve this pain. “Pediatric burn patients still need dressing changes at home after hospital discharge, and these changes could be very painful,” said Dr. Xiang. Currently, Dr. Xiang is leading a research project, funded by the Division of Emergency Medical Service of Ohio Department of Public Safety, to evaluate the feasibility and efficacy of VR games in reducing pain during burn dressing changes at home.
    The current opioid crisis underscores the need to continue to explore non-opioid approaches to controlling pain in burn patients. “The future research direction is to evaluate whether smartphone-based VR games have an opioid-sparing effect,” says Dr. Xiang. More

  • in

    Microscopy deep learning predicts viral infections

    In humans, adenoviruses can infect the cells of the respiratory tract, while herpes viruses can infect those of the skin and nervous system. In most cases, this does not lead to the production of new virus particles, as the viruses are suppressed by the immune system. However, adenoviruses and herpes viruses can cause persistent infections that the immune system is unable to completely suppress and that produce viral particles for years. These same viruses can also cause sudden, violent infections where affected cells release large amounts of viruses, such that the infection spreads rapidly. This can lead to serious acute diseases of the lungs or nervous system.
    Automatic detection of virus-infected cells
    The research group of Urs Greber, Professor at the Department of Molecular Life Sciences at the University of Zurich (UZH), has now shown for the first time that a machine-learning algorithm can recognize the cells infected with herpes or adenoviruses based solely on the fluorescence of the cell nucleus. “Our method not only reliably identifies virus-infected cells, but also accurately detects virulent infections in advance,” Greber says. The study authors believe that their development has many applications — including predicting how human cells react to other viruses or microorganisms. “The method opens up new ways to better understand infections and to discover new active agents against pathogens such as viruses or bacteria,” Greber adds.
    The analysis method is based on combining fluorescence microscopy in living cells with deep-learning processes. The herpes and adenoviruses formed inside an infected cell change the organization of the nucleus, and these changes can be observed under a microscope. The group developed a deep-learning algorithm — an artificial neural network — to automatically detect these changes. The network is trained with a large set of microscopy images through which it learns to identify patterns that are characteristic of infected or uninfected cells. “After training and validation are complete, the neural network automatically detects virus-infected cells,” explains Greber.
    Reliably predicting severe acute infections
    The research team has also demonstrated that the algorithm is capable of identifying acute and severe infections with 95 percent accuracy and up to 24 hours in advance. Images of living cells from lytic infections, in which the virus particles multiply rapidly and the cells dissolve, as well as images of persistent infections, in which viruses are produced continuously but only in small quantities, served as training material. Despite the great precision of the method, it is not yet clear which features of infected cell nuclei are recognized by the artificial neural network to distinguish the two phases of infection. However, even without this knowledge, the researchers are now able to study the biology of infected cells in greater detail.
    The group has already discovered some differences: The internal pressure of the nucleus is greater during virulent infections than during persistent phases. Furthermore, in a cell with lytic infection, viral proteins accumulate more rapidly in the nucleus. “We suspect that distinct cellular processes determine whether or not a cell disintegrates after it is infected. We can now investigate these and other questions,” says Greber.
    Story Source:
    Materials provided by University of Zurich. Note: Content may be edited for style and length. More

  • in

    New software for designing sustainable cities

    New technology could help cities around the world improve people’s lives while saving billions of dollars. The free, open-source software developed by the Stanford Natural Capital Project creates maps to visualize the links between nature and human wellbeing. City planners and developers can use the software to visualize where investments in nature, such as parks and marshlands, can maximize benefits to people, like protection from flooding and improved health.
    “This software helps design cities that are better for both people and nature,” said Anne Guerry, Chief Strategy Officer and Lead Scientist at the Natural Capital Project. “Urban nature is a multitasking benefactor — the trees on your street can lower temperatures so your apartment is cooler on hot summer days. At the same time, they’re soaking up the carbon emissions that cause climate change, creating a free, accessible place to stay healthy through physical activity and just making your city a more pleasant place to be.”
    By 2050, experts expect over 70 percent of the world’s people to live in cities — in the United States, more than 80 percent already do. As the global community becomes more urban, developers and city planners are increasingly interested in green infrastructure, such as tree-lined paths and community gardens, that provide a stream of benefits to people. But if planners don’t have detailed information about where a path might encourage the most people to exercise or how a community garden might buffer a neighborhood from flood risk while helping people recharge mentally, they can’t strategically invest in nature.
    “We’re answering three crucial questions with this software: where in a city is nature providing what benefits to people, how much of each benefit is it providing and who is receiving those benefits?” said Perrine Hamel, lead author on a new paper about the software published in Urban Sustainability and Livable Cities Program Lead at the Stanford Natural Capital Project at the time of research.
    The software, called Urban InVEST, is the first of its kind for cities and allows for the combination of environmental data, like temperature patterns, with social demographics and economic data, like income levels. Users can input their city’s datasets into the software or access a diversity of open global data sources, from NASA satellites to local weather stations. The new software joins the Natural Capital Project’s existing InVEST software suite, a set of tools designed for experts to map and model the benefits that nature provides to people.
    To test Urban InVEST, the team applied the software in multiple cities around the world: Paris, France; Lausanne, Switzerland; Shenzhen and Guangzhou, China; and several U.S. cities, including San Francisco and Minneapolis. In many cases, they worked with local partners to understand priority questions — in Paris, candidates in a municipal election were campaigning on the need for urban greenery, while in Minneapolis, planners were deciding how to repurpose underused golf course land. More

  • in

    The Earth has a pulse — a 27.5-million-year cycle of geological activity, researchers say

    Geologic activity on Earth appears to follow a 27.5-million-year cycle, giving the planet a “pulse,” according to a new study published in the journal Geoscience Frontiers.
    “Many geologists believe that geological events are random over time. But our study provides statistical evidence for a common cycle, suggesting that these geologic events are correlated and not random,” said Michael Rampino, a geologist and professor in New York University’s Department of Biology, as well as the study’s lead author.
    Over the past five decades, researchers have proposed cycles of major geological events — including volcanic activity and mass extinctions on land and sea — ranging from roughly 26 to 36 million years. But early work on these correlations in the geological record was hampered by limitations in the age-dating of geologic events, which prevented scientists from conducting quantitative investigations.
    However, there have been significant improvements in radio-isotopic dating techniques and changes in the geologic timescale, leading to new data on the timing of past events. Using the latest age-dating data available, Rampino and his colleagues compiled updated records of major geological events over the last 260 million years and conducted new analyses.
    The team analyzed the ages of 89 well-dated major geological events of the last 260 million years. These events include marine and land extinctions, major volcanic outpourings of lava called flood-basalt eruptions, events when oceans were depleted of oxygen, sea-level fluctuations, and changes or reorganization in the Earth’s tectonic plates.
    They found that these global geologic events are generally clustered at 10 different timepoints over the 260 million years, grouped in peaks or pulses of roughly 27.5 million years apart. The most recent cluster of geological events was approximately 7 million years ago, suggesting that the next pulse of major geological activity is more than 20 million years in the future.
    The researchers posit that these pulses may be a function of cycles of activity in the Earth’s interior — geophysical processes related to the dynamics of plate tectonics and climate. However, similar cycles in the Earth’s orbit in space might also be pacing these events.
    “Whatever the origins of these cyclical episodes, our findings support the case for a largely periodic, coordinated, and intermittently catastrophic geologic record, which is a departure from the views held by many geologists,” explained Rampino.
    In addition to Rampino, study authors include Yuhong Zhu of NYU’s Center for Data Science and Ken Caldeira of the Carnegie Institution for Science.
    Story Source:
    Materials provided by New York University. Note: Content may be edited for style and length. More

  • in

    Compact quantum computer for server centers

    So far, quantum computers have been one-of-a-kind devices that fill entire laboratories. Now, physicists at the University of Innsbruck have built a prototype of an ion trap quantum computer that can be used in industry. It fits into two 19-inch server racks like those found in data centers throughout the world.
    Over the past three decades, fundamental groundwork for building quantum computers has been pioneered at the University of Innsbruck, Austria. As part of the EU Flagship Quantum Technologies, researchers at the Department of Experimental Physics in Innsbruck have now built a demonstrator for a compact ion trap quantum computer. “Our quantum computing experiments usually fill 30- to 50-square-meter laboratories,” says Thomas Monz of the University of Innsbruck. “We were now looking to fit the technologies developed here in Innsbruck into the smallest possible space while meeting standards commonly used in industry.” The new device aims to show that quantum computers will soon be ready for use in data centers. “We were able to show that compactness does not have to come at the expense of functionality,” adds Christian Marciniak from the Innsbruck team.
    The individual building blocks of the world’s first compact quantum computer had to be significantly reduced in size. For example, the centerpiece of the quantum computer, the ion trap installed in a vacuum chamber, takes up only a fraction of the space previously required. It was provided to the researchers by Alpine Quantum Technologies (AQT), a spin-off of the University of Innsbruck and the Austrian Academy of Sciences which aims to build a commercial quantum computer. Other components were contributed by the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena and laser specialist TOPTICA Photonics in Munich, Germany.
    Up to 50 quantum bits
    The compact quantum computer can be operated autonomously and will soon be programmable online. A particular challenge was to ensure the stability of the quantum computer. Quantum devices are very sensitive and in the laboratory they are protected from external disturbances with the help of elaborate measures. Amazingly, the Innsbruck team succeeded in applying this quality standard to the compact device as well, thus ensuring safe and uninterrupted operation.
    In addition to stability, a decisive factor for the industrial use of a quantum computer is the number of available quantum bits. Thus, in its recent funding campaign, the German government has set the goal of initially building demonstration quantum computers that have 24 fully functional qubits. The Innsbruck quantum physicists have already achieved this goal. They were able to individually control and successfully entangle up to 24 ions with the new device. “By next year, we want to be able to provide a device with up to 50 individually controllable quantum bits,” says Thomas Monz, already looking to the future.
    The project is financially supported by the Austrian Science Fund FWF, the Research Funding Agency FFG, the European Union, and the Federation of Austrian Industries Tyrol, among others.
    Story Source:
    Materials provided by University of Innsbruck. Note: Content may be edited for style and length. More

  • in

    Physicists bring human-scale object to near standstill, reaching a quantum state

    To the human eye, most stationary objects appear to be just that — still, and completely at rest. Yet if we were handed a quantum lens, allowing us to see objects at the scale of individual atoms, what was an apple sitting idly on our desk would appear as a teeming collection of vibrating particles, very much in motion.
    In the last few decades, physicists have found ways to super-cool objects so that their atoms are at a near standstill, or in their “motional ground state.” To date, physicists have wrestled small objects such as clouds of millions of atoms, or nanogram-scale objects, into such pure quantum states.
    Now for the first time, scientists at MIT and elsewhere have cooled a large, human-scale object to close to its motional ground state. The object isn’t tangible in the sense of being situated at one location, but is the combined motion of four separate objects, each weighing about 40 kilograms. The “object” that the researchers cooled has an estimated mass of about 10 kilograms, and comprises about 1×1026, or nearly 1 octillion, atoms.
    The researchers took advantage of the ability of the Laser Interfrometer Gravitational-wave Observatory (LIGO) to measure the motion of the masses with extreme precision and super-cool the collective motion of the masses to 77 nanokelvins, just shy of the object’s predicted ground state of 10 nanokelvins.
    Their results, appearing today in Science, represent the largest object to be cooled to close to its motional ground state. The scientists say they now have a chance to observe the effect of gravity on a massive quantum object.
    “Nobody has ever observed how gravity acts on massive quantum states,” says Vivishek Sudhir, assistant professor of mechanical engineering at MIT, who directed the project. “We’ve demonstrated how to prepare kilogram-scale objects in quantum states. This finally opens the door to an experimental study of how gravity might affect large quantum objects, something hitherto only dreamed of.”
    The study’s authors are members of the LIGO Laboratory, and include lead author and graduate student Chris Whittle, postdoc Evan Hall, research scientist Sheila Dwyer, Dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics Nergis Mavalvala, and assistant professor of mechanical engineering Vivishek Sudhir. More

  • in

    Collapse may not always be inevitable for marine ice cliffs

    When it comes to global warming and sea level rise, scientists have made some dire predictions. One of the most calamitous involves the widespread collapse of ice cliffs along the edges of Greenland and Antarctica, which could raise sea level as much as 4 meters by 2200 (SN: 2/6/19). Now, new simulations suggest that massive glaciers flowing into the sea may not be as vulnerable to such collapses as once believed.

    One hypothesis that projected calamitous sea level rise is called the marine ice cliff instability. It suggests that sea-facing bluffs of ice more than 100 meters tall will fail and then slough off to expose fresh ice. Those new cliffs will in turn disintegrate, fall into the sea and float away, setting off a relatively rapid retreat of the glacier that boosts sea level rise.

    Although discussed for years, the phenomenon hasn’t yet been seen in today’s glaciers, says Jeremy Bassis, a glaciologist at the University of Michigan in Ann Arbor. “But that may not be surprising, due to the relatively short record of observations in the field and by satellites,” he says.

    Because of the dearth of field data, Bassis and colleagues decided to use computer simulations to explore ice-cliff behavior. Unlike previous models, the researchers’ simulations considered how ice flows under pressure as well as how it fractures when highly stressed. This blended model is “a pioneering composite,” says Nicholas Golledge, a glaciologist at the Victoria University of Wellington in New Zealand, who wasn’t involved in the study.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    First, the researchers simulated the collapse of a 135-meter-tall ice cliff on dry land. Over a virtual period of weeks, the face of the cliff shattered and then slumped down to the base, where the icy rubble helped buttress the cliff against further collapse. Researchers have often seen this result in the field, Bassis says.

    Then, the team simulated a 400-meter-tall glacier flowing into water that was 290 meters deep. These dimensions are typical of some of the massive glaciers in Greenland flowing into deep fjords, Bassis says. When the cybercliff collapsed, ice that fell into the water at the cliff’s base floated away, leading to repeated failures and rapid, runaway collapse of the glacier. But adding even a small amount of back pressure at the base of the cliff — as would happen if icebergs got stuck and couldn’t waft away, or if they froze in place — prevented a runaway collapse, Bassis and his team reports in the June 18 Science. “We didn’t expect this to be the case,” Bassis says. “But if small bergs got stuck in the shallows ahead of the ice cliff, it was enough to buttress the [cliff] face,” he says.

    Simulations of an 800-meter-tall glacier flowing into 690 meters of water, comparable to the dimensions of the Thwaites and Pine Island glaciers in Antarctica, yielded similar results. The researchers also found that in relatively warm ambient temperatures, ice flow upstream of the cliff thins the glacier and reduces the height of the cliff, thus reducing the likelihood of runaway collapses.

    The team’s simulations “capture what I think of as realistic behavior,” says Golledge, who coauthored a commentary on the study in the same issue of Science. Future fieldwork may help validate the group’s results. If the simulations hold, Golledge says, the less dire results may mean slower sea level rise in the short term than otherwise predicted.

    Bassis and his colleagues’ analysis “is an important piece of work,” says Ted Scambos, a glaciologist at the University of Colorado Boulder, who was not involved in the study. The results, he says, “provide a balance between the possibilities for extreme runaway collapse and some that are more realistic.” More

  • in

    Physicists used LIGO’s mirrors to approach a quantum limit

    Quantum mechanics usually applies to very small objects: atoms, electrons and the like. But physicists have now brought the equivalent of a 10-kilogram object to the edge of the quantum realm.

    Scientists with the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, reduced vibrations in a combination of the facility’s mirrors to nearly the lowest level allowed by quantum mechanics, they report in the June 18 Science.

    The researchers quelled differences between the jiggling of LIGO’s four 40-kilogram mirrors, putting them in near-perfect sync. When the mirrors are combined in this way, they behave effectively like a single, 10-kilogram object.

    LIGO is designed to measure gravitational waves, using laser light that bounces between sets of mirrors in the detector’s two long arms (SN: 2/11/16). But physicist Vivishek Sudhir of MIT and colleagues instead used the laser light to monitor the mirrors’ movements to extreme precision and apply electric fields to resist the motion. “It’s almost like a noise-canceling headphone,” says Sudhir. But instead of measuring nearby sounds and canceling out that noise, the technique cancels out motion.

    The researchers reduced the mirrors’ relative motions to about 10.8 phonons, or quantum units of vibration, close to the zero-phonon quantum limit.

    The study’s purpose is not to better understand gravitational waves, but to get closer to revealing secrets of quantum mechanics. Scientists are still trying to understand why large objects don’t typically follow the laws of quantum mechanics. Such objects lose their quantum properties, or decohere. Studying quantum states of more massive objects could help scientists pin down how decoherence happens.

    Previous studies have observed much smaller objects in quantum states. In 2020, physicist Markus Aspelmeyer of the University of Vienna and colleagues brought vibrations of a nanoparticle to the quantum limit (SN: 1/30/20). LIGO’s mirrors are “a fantastic system to study decoherence effects on super-massive objects in the quantum regime,” says Aspelmeyer. More