Scientists harness molecules into single quantum state
Researchers have big ideas for the potential of quantum technology, from unhackable networks to earthquake sensors. But all these things depend on a major technological feat: being able to build and control systems of quantum particles, which are among the smallest objects in the universe.
That goal is now a step closer with the publication of a new method by University of Chicago scientists. Published April 28 in Nature, the paper shows how to bring multiple molecules at once into a single quantum state — one of the most important goals in quantum physics.
“People have been trying to do this for decades, so we’re very excited,” said senior author Cheng Chin, a professor of physics at UChicago who said he has wanted to achieve this goal since he was a graduate student in the 1990s. “I hope this can open new fields in many-body quantum chemistry. There’s evidence that there are a lot of discoveries waiting out there.”
One of the essential states of matter is called a Bose-Einstein condensate: When a group of particles cooled to nearly absolute zero share a quantum state, the entire group starts behaving as though it were a single atom. It’s a bit like coaxing an entire band to march entirely in step while playing in tune — difficult to achieve, but when it happens, a whole new world of possibilities can open up.
Scientists have been able to do this with atoms for a few decades, but what they’d really like to do is to be able to do it with molecules. Such a breakthrough could serve as the underpinning for many forms of quantum technology.
But because molecules are larger than atoms and have many more moving parts, most attempts to harness them have dissolved into chaos. “Atoms are simple spherical objects, whereas molecules can vibrate, rotate, carry small magnets,” said Chin. “Because molecules can do so many different things, it makes them more useful, and at the same time much harder to control.”
Chin’s group wanted to take advantage of a few new capabilities in the lab that had recently become available. Last year, they began experimenting with adding two conditions. More