More stories

  • in

    Privacy-preserving 'encounter metrics' could slow down future pandemics

    When you bump into someone in the workplace or at your local coffee shop, you might call that an “encounter.” That’s the scientific term for it, too. As part of urgent efforts to fight COVID-19, a science is rapidly developing for measuring the number of encounters and the different levels of interaction in a group.
    At the National Institute of Standards and Technology (NIST), researchers are applying that science to a concept they have created called “encounter metrics.” They have developed an encrypted method that can be applied to a device such as your phone to help with the ultimate goal of slowing down or preventing future pandemics. The method is also applicable to the COVID-19 pandemic.
    Their research is explained in a pilot study published in the Journal of Research of NIST.
    Encounter metrics measure the levels of interactions between members of a population. A level of interaction could be the number of people in a bathroom who are talking to each other or a group of people walking down a hallway. There are numerous levels of interactions because there are so many different ways people can interact with one another in different environments.
    In order to mitigate the spread of an infectious disease there is the assumption that less communication and interaction with people in a community is essential. Fewer interactions among people means there is less of a chance of the disease spreading from one person to another. “We need to measure that. It’s important to develop technology to measure that and then see how we can use that technology to shape our working environment to slow future pandemics,” said NIST researcher René Peralta, an author of the NIST study.
    Picture two people walking from opposite ends of a hallway who meet in the middle. To record this encounter, each person could carry their own phone or a Bluetooth device that broadcasts a signal as soon as the encounter occurs. One way of labeling this encounter is through the exchange of device IDs or pseudonyms. Each device sends its own pseudonym that belongs to the device itself. The pseudonyms could be changed every 10 minutes as a way to promote the privacy of the person’s identity. More

  • in

    Detecting for carpal tunnel syndrome with a smartphone game

    A Japanese research group combined motion analysis that uses smartphone application and machine learning that uses an anomaly detection method, thereby developing a technique to easily screen for carpal tunnel syndrome. Carpal tunnel syndrome is common amongst middle-aged women. The disease causes compressed nerves in the wrist, causing numbness and difficulty with finger movements. While an accurate diagnosis can be reached with nerve conduction study, this is not widely used because it requires expensive devices and specialized skills. Thus, a simple screen tool that does not require any specialized knowledge or techniques is desired.
    The research group of Dr. Koji Fujita of Tokyo Medical and Dental University and associate professor Yuta Sugiura of Keio University focused on increasingly poor movements of the thumb with the advancement of the disease, and analyzed its characteristics. They developed a game application for smartphones that is played using the thumbs and prepared a program that acquires the trajectory of the thumb during a game play and estimates the possibility of the disease with machine learning. The application can screen for possible carpal tunnel syndrome using a simple game that can be played in 30 sec — 1 minute. Even without gathering patient data, they were able to effectively construct an estimate mode from the data of 12 asymptomatic participants using the anomaly detection method. When this program was applied to 15 new asymptomatic subjects and 36 patients with carpal tunnel syndrome to verify its accuracy, the result was promising with 93% sensitivity, 69% specificity, and 0.86 Area Under the Curve (AUC)(1). This is equivalent or better than the results of physical examinations by expert orthopedic surgeons.
    The developed tool can be used to screen for possible carpal tunnel syndrome at sites where no expert is present, such as at home or at a health center. In the future, the research group aims to develop a system that is able to encourage an examination by an expert when the disease is suspected in order to prevent exacerbation. It would prevent inconvenience and social loss associated with exacerbation of a disease, which is more common among women, and contribute to creating a society where women play an active role.
    The research was conducted as part of JST’s Strategic Basic Research Program, Precursory Research for Embryonic Science and Technology (PRESTO).
    (1) Area Under the Curve (AUC)
    This assessment item is used for each test method, and a higher value indicates a better test. Sensitivity is the ratio of correct positive results for subjects with a disease. Specificity is the ratio of correct negative results for subjects without a disease. AUC is the comprehensive assessment indicator of accuracy that combines sensitivity and specificity and takes a value between 0 and 1.
    Story Source:
    Materials provided by Japan Science and Technology Agency. Note: Content may be edited for style and length. More

  • in

    Artificial intelligence as a co-driver

    The use of artificial intelligence (AI) is becoming more common in many branches of industry and online retailing. Traditional lines of work, such as transport logistics and driving, are developing in a similar direction although mainly out of public view. Scientists at the University of Göttingen have now investigated how efficient the use of AI can be in the commercial management of trucks. Their answer: the best option is an intelligent combination of human decision-making and AI applications. The study was published in the International Journal of Logistics Management.
    “As has happened in the private sector, digital applications — as well as machine learning, a kind of AI — are increasingly permeating operations and processes in the transport and logistics sector,” explains Professor Matthias Klumpp from the Faculty of Economics. “The question in the commercial sector, however, is whether or not this contributes to achieving goals and efficiency in companies.”
    To answer this question, the researchers compared the work efficiency of truck drivers in relation to their use of AI applications such as dynamic real-time navigation systems, cruise control and automated gear-shifting based on speed and topography and others. Looking at retail trade delivery by truck, they studied three comparison groups: the first drove exclusively following human decision-making patterns; the second used a combination of human and machine; and the third relied exclusively on fully automated decisions.
    The researchers from the Production and Logistics Research Group concluded that an intelligent combination of human work and decision-making capabilities with AI applications promises the highest transport and driving efficiency: “On average, the second group achieved the most efficient transport trips, with the fewest interventions and deviations from the optimal path,” the authors said. “Clearly, neither a purely human decision-making structure nor a fully automated driving system can promise to meet current logistics requirements.”
    The scientists therefore deduce that despite the progress of AI in the field of transportation by truck, human experience and decision-making capabilities will still be necessary in the longer term. “However, extensive training and qualification needs will occur by working with AI applications, especially for simple logistics activities,” the authors conclude. “Technology and AI innovations are therefore not a question for management alone. In particular, efficiency and competitive advantages can be achieved through their application in operational transport.”
    Story Source:
    Materials provided by University of Göttingen. Note: Content may be edited for style and length. More

  • in

    How kelp forests off California are responding to an urchin takeover

    Joshua Smith has been diving in kelp forests in Monterey Bay along the central coast of California since 2012. Back then, he says, things looked very different. Being underwater was like being in a redwood forest, where the kelp was like “towering tall cathedrals,” says Smith, an ecologist at the University of California, Santa Cruz. Their tops were so lush that it was hard to maneuver a boat across them.

    No longer. The once expansive kelp forests are now a mosaic of thinner thickets interspersed with barrens colonized by sea urchins. And those sea urchins have so little to eat, they aren’t even worth the effort of hungry sea otters — which usually keep urchins in check and help keep kelp forests healthy, Smith and his colleagues report March 8 in the Proceedings of the National Academy of Sciences.

    A similar scene is playing out farther north. A thick kelp forest once stretched 350 kilometers along the northern California coast. More than 95 percent of it has vanished since 2014, satellite imagery shows. Once covering about 210 hectares on average, those forests have been reduced to a mere 10 hectares scattered among a few small patches, Meredith McPherson, a marine biologist also at UC Santa Cruz, and her colleagues report March 5 in Communications Biology. Like the barrens farther south, the remaining forests are now covered by purple sea urchins.

    Satellite images in 2008 (left) and 2019 (right) of a section of the northern California coastline reveal a 95 percent reduction in the area covered by underwater kelp forests (yellow).Meredith McPherson

    Satellite images in 2008 (left) and 2019 (right) of a section of the northern California coastline reveal a 95 percent reduction in the area covered by underwater kelp forests (yellow).Meredith McPherson

    Together, the two studies reveal the devastation of these once resilient ecosystems. But a deeper dive into the cascading effects of this loss may also provide clues to how at least some of these forests can bounce back.

    California’s kelp forests, which provide a rich habitat for marine organisms, got hit by a double whammy of ecological disasters in the past decade, says UC Santa Cruz ecologist Mark Carr. He is a coauthor on the Communications Biology paper who has mentored both McPherson and Smith.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    First, sea star wasting syndrome wiped out local populations of sunflower sea stars (Pycnopodia helianthoides), which typically feed on urchins (SN: 1/20/21). Without sea stars, purple sea urchins (Strongylocentrotus purpuratus) proliferated.

    The second wallop was a marine heat wave so big and persistent it was nicknamed “The Blob” (SN: 12/14/17). While kelp forests have been resilient to warming events before, this one was so extreme it spiked temperatures in many parts of the Pacific to 2 to 3 degrees Celsius above normal (SN: 1/15/20).

    Kelp thrives in cold and nutrient rich water. As its growth slowed in the warmer water, less kelp drifted into the crevices of the reefs where sea urchins typically lurk. With a key predator gone and a newfound need to forage for food rather than waiting for it to come to them, urchins emerged and turned the remaining kelp into a giant buffet.

    For the northern California kelp forests, the shift could spell doom for two reasons. The dominant species growing there is bull kelp (Nereocystis leutkeana). It dies each winter to return again in the spring, and the changes are making it more difficult to bounce back year after year.  In comparison, one of the main kelp species in Monterey Bay is giant kelp (Macrocystis pyrifera), which lives for many years, making it a bit more resilient.

    Bull kelp (Nereocystis leutkeana), seen here growing at Pescadero Point near Carmel-by-the-Sea, Calif., becomes the dominant species of kelp growing along the northern California coast. A marine heat wave and loss of a sea urchin predator has led to a massive loss of bull kelp in that region.Steve Lonhart/NOAA, MBNMS

    The kelp forests in the north also lack an urchin predator common farther south: sea otters. Those sea otters are what’s providing a glimmer of hope in Monterey Bay. Smith and his colleagues wondered how the bonanza of sea urchins was affecting the otters. They found that sea otters were eating three times as many sea urchins as they were before 2014, but they were being picky. They avoided the more populous urchin barrens, instead feasting only on urchins in the remaining patches of kelp. That’s because the barrens offer only a poor diet of scraps, leaving the urchins there essentially hollow on the inside. “Zombies,” Smith calls them.

    The nutrient-rich urchins in the healthy kelp make a far better sea otter snack. And by zeroing in on those urchins, the otters keep the population in check, preventing urchins from scarfing up the remaining kelp.

    Simply transplanting sea otters to new locations may create new challenges. That’s what happened off the Pacific Coast of Canada. Kelp forests there rebounded, but the otters competed with humans, especially Indigenous communities, that rely on the same food sources (SN: 6/11/20).

    “The community on the North Coast is a very natural resource–dependent community, and this will impact them,” says Marissa Baskett, an ecologist at the University of California, Davis.

    And there’s a lot of work to do to figure out how to bring back sunflower sea stars, now a critically endangered species. Nailing down the cause of the wasting syndrome, which is still unknown, will be crucial to recovery efforts.

    Even so, understanding these interactions can provide clues to how to help restore the lost kelp forests, Baskett says. “These findings can inform restoration efforts aimed at recovering kelp forests and anticipating the effects of future marine heat waves.” More

  • in

    AI used in battle against asbestos-linked cancer

    International genomics research led by the University of Leicester has used artificial intelligence (AI) to study an aggressive form of cancer, which could improve patient outcomes.
    Mesothelioma is caused by breathing asbestos particles and most commonly occurs in the linings of the lungs or abdomen. Currently, only seven per cent of people survive five years after diagnosis, with a prognosis averaging 12 to 18 months.
    New research undertaken by the Leicester Mesothelioma Research Programme has now revealed, using AI analysis of DNA-sequenced mesotheliomas, that they evolve along similar or repeated paths between individuals. These paths predict the aggressiveness and possible therapy of this otherwise incurable cancer.
    Professor Dean Fennell, Chair of Thoracic Medical Oncology at the University of Leicester and Director of the Leicester Mesothelioma Research Programme, said:
    “It has long been appreciated that asbestos causes mesothelioma, however how this occurs remains a mystery.
    “Using AI to interrogate genomic ‘big data’, this initial work shows us that mesotheliomas follow ordered paths of mutations during development, and that these so-called trajectories predict not only how long a patient may survive, but also how to better treat the cancer — something Leicester aims to lead on internationally through clinical trial initiatives.”
    While use of asbestos is now outlawed — and stringent regulations in place on its removal — each year around 25 people are diagnosed with mesothelioma in Leicestershire and 190 are diagnosed in the East Midlands. Cases of mesothelioma in the UK have increased by 61% since the early 1990s.
    Until very recently, chemotherapy was the only licenced choice for patients with mesothelioma. However, treatment options start to become limited once people stop responding to their treatment.
    Professor Fennell in collaboration with the University of Southampton recently made a major breakthrough in treating the disease by demonstrating that use of an immunotherapy drug called nivolumab increased survival and stabilised the disease for patients. This was the first-ever trial to demonstrate improved survival in patients with relapsed mesothelioma.
    Story Source:
    Materials provided by University of Leicester. Note: Content may be edited for style and length. More

  • in

    Simple hand-built structures can help streams survive wildfires and drought

    Wearing waders and work gloves, three dozen employees from the U.S. Department of Agriculture’s Natural Resources Conservation Service stood at a small creek amid the dry sagebrush of southeastern Idaho. The group was eager to learn how to repair a stream the old­-fashioned way.

    Tipping back his white cowboy hat, 73-year-old rancher Jay Wilde told the group that he grew up swimming and fishing at this place, Birch Creek, all summer long. But when he took over the family farm from his parents in 1995, the stream was dry by mid-June.

    Wilde realized this was partly because his family and neighbors, like generations of American settlers before them, had trapped and removed most of the dam-building beavers. The settlers also built roads, cut trees, mined streams, overgrazed livestock and created flood-control and irrigation structures, all of which changed the plumbing of watersheds like Birch Creek’s.

    Many of the wetlands in the western United States have disappeared since the 1700s. California has lost an astonishing 90 percent of its wetlands, which includes streamsides, wet meadows and ponds. In Nevada, Idaho and Colorado, more than 50 percent of wetlands have vanished. Precious wet habitats now make up just 2 percent of the arid West — and those remaining wet places are struggling.

    Nearly half of U.S. streams are in poor condition, unable to fully sustain wildlife and people, says Jeremy Maestas, a sagebrush ecosystem specialist with the NRCS who organized that workshop on Wilde’s ranch in 2016. As communities in the American West face increasing water shortages, more frequent and larger wildfires (SN: 9/26/20, p. 12) and unpredictable floods, restoring ailing waterways is becoming a necessity.

    Staff from the USDA Natural Resources Conservation Service pound posts to build a beaver dam analog across Birch Creek in Idaho in 2016. The effort gave nine relocated beavers a head start to create their own dam complexes.J. Maestas/USDA NRCS

    Landowners and conservation groups are bringing in teams of volunteers and workers, like the NRCS group, to build low-cost solutions from sticks and stones. And the work is making a difference. Streams are running longer into the summer, beavers and other animals are returning, and a study last December confirmed that landscapes irrigated by beaver activity can resist wildfires.

    Filling the sponge

    Think of a floodplain as a sponge: Each spring, floodplains in the West soak up snow melting from the mountains. The sponge is then wrung out during summer and fall, when the snow is gone and rainfall is scarce. The more water that stays in the sponge, the longer streams can flow and plants can thrive. A full sponge makes the landscape better equipped to handle natural disasters, since wet places full of green vegetation can slow floods, tolerate droughts or stall flames.

    Typical modern-day stream and river restoration methods can cost about $500,000 per mile, says Joseph Wheaton, a geomorphologist at Utah State University in Logan. Projects are often complex, and involve excavators and bulldozers to shore up streambanks using giant boulders or to construct brand-new channels.

    “Even though we spend at least $15 billion per year repairing waterways in the U.S., we’re hardly scratching the surface of what needs fixing,” Wheaton says.

    Big yellow machines are certainly necessary for restoring big rivers. But 90 percent of all U.S. waterways are small streams, the kind you can hop over or wade across.

    For smaller streams, hand-built restoration solutions work well, often at one-tenth the cost, Wheaton says, and can be self-sustaining once nature takes over. These low-tech approaches include building beaver dam analogs to entice beavers to stay and get to work, erecting small rock dams or strategically mounding mud and branches in a stream. The goal of these simple structures is to slow the flow of water and spread it across the floodplain to help plants grow and to fill the underground sponge.

    Less than a year after workers installed this hand-built rock structure, called a Zuni bowl, in an intermittent stream in southwestern Montana, erosion stopped moving upstream, keeping the grass above the structure green and lush.Sean Claffey/Southwest Montana Sagebrush Partnership

    Fixes like these help cure a common ailment that afflicts most streams out West, including Birch Creek, Wheaton says: Human activities have altered these waterways into straightened channels largely devoid of debris. As a result, most riverscapes flow too straight and too fast.

    “They should be messy and inefficient,” he says. “They need more structure, whether it’s wood, rock, roots or dirt. That’s what slows down the water.” Wheaton prefers the term “riverscape” over stream or river because he “can’t imagine a healthy river without including the land around it.”

    Natural structures “feed the stream a healthy diet” of natural materials, allowing soil and water to accumulate again in the floodplain, he says.

    Since as much as 75 percent of water resources in the West are on private land, conservation groups and government agencies like the NRCS are helping ranchers and farmers improve the streams, springs or wet meadows on their property.

    “In the West, water is life,” Maestas says. “But it’s a very time-limited resource. We’re trying to keep what we have on the landscape as long as possible.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Beaver benefits

    In watersheds across the West, beavers can be a big part of filling the floodplain’s sponge. The rodents gnaw down trees to create lodges and dams, and dig channels for transporting their logs to the dams. All this work slows down and spreads out the water.

    On two creeks in northeastern Nevada, streamsides near beaver dams were up to 88 percent greener than undammed stream sections when measured from 2013 to 2016. Even better, beaver ponds helped maintain lush vegetation during the hottest summer months, even during a multiyear drought, Emily Fairfax, an ecohydrologist at California State University Channel Islands, and geologist Eric Small of University of Colorado Boulder reported in 2018 in Ecohydrology.

    Satellite images show that when beavers settled into one part of Nevada’s Maggie Creek (bottom), digging channels to ferry in logs to build dams, the floodplain was wider, wetter and greener than an area of the creek with no dams (top).E. Fairfax/CSU Channel Islands

    Satellite images show that when beavers settled into one part of Nevada’s Maggie Creek (bottom), digging channels to ferry in logs to build dams, the floodplain was wider, wetter and greener than an area of the creek with no dams (top).E. Fairfax/CSU Channel Islands

    “Bringing beavers back just makes good common sense when you get down to the science of it,” Wilde says. He did it on his ranch.

    Using beavers to restore watersheds is not a new idea. In 1948, for instance, Idaho Fish and Game biologists parachuted beavers out of airplanes, partly to improve trout habitat on public lands.

    Wilde used trucks instead of parachutes. In 2015 and 2016, he partnered with the U.S. Forest Service and Idaho Fish and Game to livetrap and relocate nine beavers to Birch Creek from public lands about 120 kilometers away. To ensure the released rodents had a few initial ponds where they could escape from predators, Wilde worked with Anabranch Solutions, a riverscape restoration company cofounded by Wheaton and colleagues, to construct 26 beaver dam analogs. Would these simple branch-and-post structures entice the beavers to stay in Birch Creek?

    It worked like a charm. In just three years, those beavers built 149 dams, transforming the once-narrow strip of green along the stream into a wide, vibrant floodplain. Birch Creek flowed 42 days longer, through the hottest part of the summer. Fish rebounded quickly too: Native Bonneville cutthroat trout populations were up to 50 times as abundant in the ponded sections in 2019 as they were when surveyed by the U.S. Forest Service in 2000, before beavers went to work.

    “When you see the results, it’s almost like magic,” Wilde says. Even more magical, the transformation cost Wilde only “a couple hundred bucks in fence posts” and a few days of sweat equity, thanks in part to those NRCS staffers who came in 2016 and a host of volunteers.

    Rock dams in the desert

    Beaver-powered restoration isn’t the answer everywhere, especially in the desert where creeks are ephemeral, flowing only intermittently. In Colorado’s Gunnison River basin, ranchers were looking for ways to boost water availability to ensure their cattle had enough drinking water and green grass in the face of climate change. Meanwhile, the area’s public land managers wanted to restore streams to help at-risk wildlife species like the Gunnison sage grouse, once prolific across sagebrush country.

    In 2012, a group of private landowners, public agencies and nonprofit organizations launched the Gunnison Basin Wet Meadow and Riparian Restoration and Resilience-building Project to revive streams and keep meadows green. The group hired Bill Zeedyk to instruct on how to build simple, low-profile dams by stacking rocks, known widely as Zeedyk structures, to slow down the water.

    Zeedyk, now 85, runs his own wetland and stream restoration firm in New Mexico, after 34 years as a wildlife biologist at the U.S. Forest Service. His 2014 book Let the Water Do the Work has inspired people across the West — including Maestas and Wheaton — to turn to simple, nature-based stream restoration solutions.

    Over the last nine years, Zeedyk has helped the Gunnison collaborative build nearly 2,000 rock structures throughout the roughly 10,000-square-kilometer upper Gunnison watershed. The group has restored 43 kilometers of stream and improved nearly 500 hectares of wet habitat for people and wildlife. A typical project involves a dozen volunteers working for a day or two in one creek bottom where they build dozens of rock structures.

    In 2017, Maestas asked Zeedyk to show more than 100 people involved in the NRCS-led Sage Grouse Initiative how to install rock structures. The white-bearded Zeedyk led them along an eroding gully near Gunnison that June.

    Conservation professionals gathered in Gunnison, Colo., in 2017 to learn how to build Zeedyk structures, simple rock dams that slow the flow of water in small creeks to increase surrounding plant growth.B. Randall

    Lifting his wooden walking staff, Zeedyk pointed out how the adjacent dirt road originally created by horses and wagons cut off the creek from its historic floodplain. The road made the channel shorter, straighter and steeper over time. “There’s less growing space, and the whole system is less productive,” he explained.

    As participants decided where to stack rocks to spread water across the dusty sagebrush flat, Zeedyk encouraged them to “read the landscape” and “think like water.” After three hours of work, participants could already see ponds forming behind their rock creations.

    Watching the teams work and laugh together, Maestas called it the aha moment for the crew. “When you get your hands dirty, there’s a degree of buy-in that can’t come from sitting in a classroom or reading about it.”

    The grass is greener

    The hope is that, like the beaver dam analogs, these hand-built rock structures will halt erosion, capture sediment, fill the floodplain sponge and grow more water-loving plants.

    Patience, Zeedyk says, is crucial. “After we put natural processes into play in a positive direction, we have to wait for the water to do its work.”

    The wait isn’t necessarily long. At four of the sites in the Gunnison basin restored with Zeedyk structures, wetland plant cover (including sedges, rushes, willows and wetland forbs) increased an average of 160 percent four years post-treatment, compared with a 15 percent average increase at untreated areas near each study site, according to a 2017 report by The Nature Conservancy.

    “As of 2019, we had increased the wetland species cover by 200 percent in six years,” says Renee Rondeau, an ecologist at the Colorado Natural Heritage Program, based in Hesperus. “So great to see this success.”

    Animals seem to enjoy all that fresh green growth too. Colorado Parks and Wildlife set up remote cameras to monitor whether wildlife use the restored floodplain. Since 2016, the cameras have captured more than 1.5 million images, most of which show a host of animals — from cattle and elk to sage grouse and voles — munching away in the now-lush meadows. A graduate student at Western Colorado University is classifying photos to determine whether there’s a significant difference in the number of Gunnison sage grouse at the restored sites compared with adjacent untreated areas.

    “Sage grouse chicks chase the green line as the desert dries up,” Maestas explains. After hatching in June, hens and their broods seek out wet areas where chicks stock up on protein-rich insects and wildflowers to grow and survive the winter.

    A remote camera spies Gunnison sage grouse feasting on insects and plants in a wet meadow. The area stays green long into the summer because of hand-built rock dams that spread water across the land.Courtesy of Nathan Seward/Colorado Parks and Wildlife

    Water in the bank

    The Gunnison basin is not the only place where sticks-and-stones restoration is paying dividends for people and wildlife. Nick Silverman, a hydroclimatologist and geospatial data scientist, and his colleagues at the University of Montana in Missoula used satellite imagery to evaluate changes in “greenness” at three sites that used different simple stream restoration treatments: Zeedyk’s rock structures in Gunnison, beaver dam analogs in Oregon’s Bridge Creek and fencing projects that kept livestock away from streambanks in northeastern Nevada’s Maggie Creek.

    Late summer greenness increased up to 25 percent after streams were restored compared with before, the researchers reported in 2018 in Restoration Ecology. Plus, the streams showed greater resilience to climate variability as time went on: Along Maggie Creek, restored more than two decades before the study, the plants stayed green even when rainfall was low, and the area had substantial increases in plant production during late summer, when vegetation usually dries out.

    “It’s like putting water in a piggy bank when it’s wet, so plants and animals can withdraw it later when it’s dry,” Silverman says. Even more exciting, he adds, is that the impact of the low-cost options is large enough to see from space.

    Water doesn’t burn

    The Sharps Fire that scorched south-central Idaho in July 2018 burned a wide swath of a watershed where Idaho Fish and Game had relocated beavers to restore a floodplain. A strip of wet, green vegetation stood untouched along the beavers’ ponds. Wheaton sent a drone to take photos, tweeting out an image on September 5, 2018: “Why is there an impressive patch of green in the middle of 65,000 acres of charcoal? Turns out water doesn’t burn. Thank you beaver!”

    The green strip of vegetation along beaver-made ponds in Baugh Creek near Hailey, Idaho, resisted flames when a wildfire scorched the region in 2018, as shown in this drone image.J. Wheaton/Utah State Univ.

    Fairfax, the ecohydrologist who reported that beaver dams increase streamside greenness, had been searching for evidence that beavers could help keep flames at bay. Wheaton’s tweet was a “kick in the pants to push my own research on beavers and fire forward,” she says.

    With undergraduate student Andrew Whittle, now at the Colorado School of Mines, Fairfax got to work analyzing satellite imagery from recent wildfires. The two mapped thousands of beaver dams within wildfire-burned areas in several western states. Choosing five fires of varying severity in both shrubland and forested areas, the pair analyzed the data to see if creeks with beaver activity stayed greener than creeks without beavers during wildfires.

    [embedded content]
    Emily Fairfax produced this stop-motion video to show how beavers and their dams and channels keep water in an area, supporting the surrounding vegetation and helping the area resist wildfires.

    “Across the board, beaver-dammed areas didn’t burn,” Fairfax says. The study was published last December in Ecological Applications during one of the West’s worst fire seasons. It garnered plenty of attention from land managers asking for more specifics, like how many beavers are needed to buffer a fire.

    Fairfax plans to study several more burned sites with beaver ponds. She hopes to eventually create a statistical model that can help people plan nature-powered stream restoration projects.

    “When we’re seeing hotter, more unpredictable fires that are breaking all the rules we know of,” Fairfax says, “we have to figure out how to preserve critical wet habitats.” More

  • in

    After AIs mastered Go and Super Mario, scientists have taught them how to 'play' experiments

    Inspired by the mastery of artificial intelligence (AI) over games like Go and Super Mario, scientists at the National Synchrotron Light Source II (NSLS-II) trained an AI agent — an autonomous computational program that observes and acts — how to conduct research experiments at superhuman levels by using the same approach. The Brookhaven team published their findings in the journal Machine Learning: Science and Technology and implemented the AI agent as part of the research capabilities at NSLS-II.
    As a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Brookhaven National Laboratory, NSLS-II enables scientific studies by more than 2000 researchers each year, offering access to the facility’s ultrabright x-rays. Scientists from all over the world come to the facility to advance their research in areas such as batteries, microelectronics, and drug development. However, time at NSLS-II’s experimental stations — called beamlines — is hard to get because nearly three times as many researchers would like to use them as any one station can handle in a day — despite the facility’s 24/7 operations.
    “Since time at our facility is a precious resource, it is our responsibility to be good stewards of that; this means we need to find ways to use this resource more efficiently so that we can enable more science,” said Daniel Olds, beamline scientist at NSLS-II and corresponding author of the study. “One bottleneck is us, the humans who are measuring the samples. We come up with an initial strategy, but adjust it on the fly during the measurement to ensure everything is running smoothly. But we can’t watch the measurement all the time because we also need to eat, sleep and do more than just run the experiment.”
    “This is why we taught an AI agent to conduct scientific experiments as if they were video games. This allows a robot to run the experiment, while we — humans — are not there. It enables round-the-clock, fully remote, hands-off experimentation with roughly twice the efficiency that humans can achieve,” added Phillip Maffettone, research associate at NSLS-II and first author on the study.
    According to the researchers, they didn’t even have to give the AI agent the rules of the ‘game’ to run the experiment. Instead, the team used a method called “reinforcement learning” to train an AI agent on how to run a successful scientific experiment, and then tested their agent on simulated research data from the Pair Distribution Function beamline at NSLS-II.
    Beamline Experiments: A Boss Level Challenge
    Reinforcement learning is one strategy of training an AI agent to master an ability. The idea of reinforcement learning is that the AI agent perceives an environment — a world — and can influence it by performing actions. Depending on how the AI agent interacts with the world, it may receive a reward or a penalty, reflecting if this specific interaction is a good choice or a poor one. The trick is that the AI agent retains the memory of its interactions with the world, so that it can learn from the experience for when it tries again. In this way, the AI agent figures out how to master a task by collecting the most rewards. More

  • in

    Soft robotic dragonfly signals environmental disruptions

    Engineers at Duke University have developed an electronics-free, entirely soft robot shaped like a dragonfly that can skim across water and react to environmental conditions such as pH, temperature or the presence of oil. The proof-of-principle demonstration could be the precursor to more advanced, autonomous, long-range environmental sentinels for monitoring a wide range of potential telltale signs of problems.
    The soft robot is described online March 25 in the journal Advanced Intelligent Systems.
    Soft robots are a growing trend in the industry due to their versatility. Soft parts can handle delicate objects such as biological tissues that metal or ceramic components would damage. Soft bodies can help robots float or squeeze into tight spaces where rigid frames would get stuck.
    The expanding field was on the mind of Shyni Varghese, professor of biomedical engineering, mechanical engineering and materials science, and orthopaedic surgery at Duke, when inspiration struck.
    “I got an email from Shyni from the airport saying she had an idea for a soft robot that uses a self-healing hydrogel that her group has invented in the past to react and move autonomously,” said Vardhman Kumar, a PhD student in Varghese’s laboratory and first author of the paper. “But that was the extent of the email, and I didn’t hear from her again for days. So the idea sort of sat in limbo for a little while until I had enough free time to pursue it, and Shyni said to go for it.”
    In 2012, Varghese and her laboratory created a self-healing hydrogel that reacts to changes in pH in a matter of seconds. Whether it be a crack in the hydrogel or two adjoining pieces “painted” with it, a change in acidity causes the hydrogel to form new bonds, which are completely reversible when the pH returns to its original levels. More