More stories

  • in

    Language may undermine women in science and tech

    Despite decades of positive messaging to encourage women and girls to pursue education tracks and careers in STEM, women continue to fall far below their male counterparts in these fields. A new study at Carnegie Mellon University examined 25 languages to explore the gender stereotypes in language that undermine efforts to support equality across STEM career paths. The results are available in the August 3rd issue of Nature Human Behavior.
    Molly Lewis, special faculty at CMU and her research partner, Gary Lupyan, associate professor at University of Wisconsin-Madison, set out to examine the effect of language on career stereotypes by gender. They found that implicit gender associations are strongly predicted by the language we speak. Their work suggests that linguistic associations may be causally related to people’s implicit judgement of what women can accomplish.
    “Young children have strong gender stereotypes as do older adults, and the question is where do these biases come from,” said Lewis, first author on the study. No one has looked at implicit language — simple language that co-occurs over a large body of text — that could give information about stereotypical norms in our culture across different languages.”
    In general, the team examined how words co-occur with women compared to men. For example, how often is ‘woman’ associated with ‘home,’ ‘children’ and ‘family,’ where as ‘man’ was associated with ‘work,’ ‘career’ and ‘business.’
    “What’s not obvious is that a lot of information that is contained in language, including information about cultural stereotypes, [occurs not as] direct statements but in large-scale statistical relationships between words,” said Lupyan, senior author on the study. “Even without encountering direct statements, it is possible to learn that there is stereotype embedded in the language of women being better at some things and men at others.”
    They found that languages with a stronger embedded gender association are more clearly associated with career stereotypes. They also found that a positive relationship between gender-marked occupation terms and the strength of these gender stereotypes.

    advertisement

    Previous work has shown that children begin to ingrain gender stereotypes in their culture by the age of two. The team examined statistics regarding gender associations embedded in 25 languages and related the results to an international dataset of gender bias (Implicit Association Test).
    Surprisingly, they found that the median age of the country influences the study results. Countries with a larger older population have a stronger bias in career-gender associations.
    “The consequences of these results are pretty profound,” said Lewis. “The results suggest that if you speak a language that is really biased then you are more likely to have a gender stereotype that associates men with career and women with family.”
    She suggests children’s books be written and designed to not have gender-biased statistics. These results also have implications for algorithmic fairness research aimed at eliminating gender bias in computer algorithms.
    “Our study shows that language statistics predict people’s implicit biases — languages with greater gender biases tend to have speakers with greater gender biases,” Lupyan said. “The results are correlational, but that the relationship persists under various controls [and] does suggest a causal influence.”
    Lewis notes that the Implicit Association Test used in this study has been criticized for low reliability and limited external validity. She stresses that additional work using longitudinal analyses and experimental designs is necessary to explore language statistics and implicit associations with gender stereotypes.
    Lewis and Lupyan received funding for the project, titled “Gender stereotypes are reflected in the distributional structure of 25 languages,” from the National Science Foundation.

    Story Source:
    Materials provided by Carnegie Mellon University. Original written by Stacy Kish. Note: Content may be edited for style and length. More

  • in

    Novel magnetic stirrer speaks to lab equipment

    A current problem for a wide range of chemists is when stirring a solution in the laboratory there is a need to check the properties of the solution and monitor how they change.
    In the paper, ‘Monitoring chemistry in situ with the Smart Stirrer — a magnetic stirrer bar with an integrated process monitoring system’ published in the journal ACS Sensors, researchers from the School of Engineering, the Mathematics Institute and WMG at the University of Warwick present their innovative stirrer sensor.
    The small device, called “Smart Stirrer,” performed a function of a conventional laboratory stir bar, has an integrated microprocessor and various sensors capable of wireless and autonomous report the conversion of properties of a solution. The advanced sensor stir bar is a capsule shaped magnet encased in plastic.
    A beaker filled with a solution is placed on a platform that generates a rotating magnetic field, when the magnetic stirrer is placed in the solution it continuously rotates stirring the liquid.
    The Smart Stirrer then monitors:
    – Colour
    – Transparency
    – Conductivity

    advertisement

    – Viscosity
    – Temperature

    Results are sent to a computer over Bluetooth, and any changes notify the user wirelessly. Although the idea of using magnetic stir bar with integrated sensors may not be entirely new, this new affordable, multi-sensor and easy programmable stirrer sensor device is first in its kind.
    The concept is valuable to Research and Design laboratories and pharmaceutical and chemistry manufacturing industries because it allows wireless monitoring of several parameters of a chemical reaction simultaneously
    Dr Dmitry Isakov, from WMG at the University who led the study comments:
    “We are still continuing research into the stirrer, the next revision of the stirrer sensor that will be smaller size and with a bit more sophisticated sensors. We are collaborating with several chemists from Warwick University. This will help us to understand their needs and help to improve the device.

    advertisement

    “The beauty of the Smart Stirrer is that it can be used everywhere, such as a sealed vessels thus minimising the contamination of the reactor. It may give a push to new discoveries as well. It is easy to integrate the stirrer into the labware family and make it “speak” to other lab equipment.”
    Samuel Baldwin, from the Mathematics institute at the University of Warwick worked on the smart stirrer during his WMG summer internship, he comments:
    “I have found every stage of development of the Smart Stirrer to be very fulfilling, from circuit design, to manufacturing to finally programming. We have leveraged state-of-the-art technology to build a device with very low power consumption, a broad range of sensor capabilities, and high data-throughput over the Bluetooth Low Energy platform.
    “The laboratory of the future is that of automation, reproducibility and safety; our all-in-one Smart Stirrer device eliminates the need for a vast array of individual wired sensors whilst maintaining the control and customisability that one would expect from any piece of advanced laboratory equipment. I look forward to seeing the Smart Stirrer solve laboratory problems and help us understand complex reactions.”

    Story Source:
    Materials provided by University of Warwick. Note: Content may be edited for style and length. More

  • in

    Blackjack: Can a quantum strategy help bring down the house?

    In some versions of the game blackjack, one way to win against the house is for players at the table to work as a team to keep track of and covertly communicate amongst each other the cards they have been dealt. With that knowledge, they can then estimate the cards still in the deck, and those most likely to be dealt out next, all to help each player decide how to place their bets, and as a team, gain an advantage over the dealer.
    This calculating strategy, known as card-counting, was made famous by the MIT Blackjack Team, a group of students from MIT, Harvard University, and Caltech, who for several decades starting in 1979, optimized card-counting and other techniques to successfully beat casinos at blackjack around the world — a story that later inspired the book “Bringing Down the House.”
    Now researchers at MIT and Caltech have shown that the weird, quantum effects of entanglement could theoretically give blackjack players even more of an edge, albeit a small one, when playing against the house.
    In a paper published this week in the journal Physical Review A, the researchers lay out a theoretical scenario in which two players, playing cooperatively against the dealer, can better coordinate their strategies using a quantumly entangled pair of systems. Such systems exist now in the laboratory, although not in forms convenient for any practical use in casinos. In their study, the authors nevertheless explore the theoretical possibilities for how a quantum system might influence outcomes in blackjack.
    They found that such quantum communication would give the players a slight advantage compared to classical card-counting strategies, though in limited situations where the number of cards left in the dealer’s deck is low.
    “It’s pretty small in terms of the actual magnitude of the expected quantum advantage,” says first author Joseph Lin, a former graduate student at MIT. “But if you imagine the players are extremely rich, and the deck is really low in number, so that every card counts, these small advantages can be big. The exciting result is that there’s some advantage to quantum communication, regardless of how small it is.”
    Lin’s MIT co-authors on the paper are professor of physics Joseph Formaggio, associate professor of physics Aram Harrow, and Anand Natarajan of Caltech, who will start at MIT in September as assistant professor of electrical engineering and computer science.

    advertisement

    Quantum dealings
    Entanglement is a phenomenon described by the rules of quantum mechanics, which states that two physically separate objects can be “entangled,” or correlated with each other, in such a way that the correlations between them are stronger than what would be predicted by the classical laws of physics and probability.
    In 1964, physicist John Bell proved mathematically that quantum entanglement could exist, and also devised a test — known a Bell test — that scientists have since applied to many scenarios to ascertain if certain spatially remote particles or systems behave according to classical, real-world physics, or whether they may exhibit some quantum, entangled states.
    “One motivation for this work was as a concrete realization of the Bell test,” says Harrow of the team’s new paper. “People wrote the rules of blackjack not thinking of entanglement. But the players are dealt cards, and there are some correlations between the cards they get. So does entanglement work here? The answer to the question was not obvious going into it.”
    After casually entertaining the idea during a regular poker night with friends, Formaggio decided to explore the possibility of quantum blackjack more formally with his MIT colleagues.

    advertisement

    “I was grateful to them for not laughing and closing the door on me when I brought up the idea,” Formaggio recalls.
    Correlated cards
    In blackjack, the dealer deals herself and each player a face-up card that is public to all, and a face-down card. With this information, each player decides whether to “hit,” and be dealt another card, or “stand,” and stay with the cards they have. The goal after one round is to have a hand with a total that is closer to 21, without going over, than the dealer and the other players at the table.
    In their paper, the researchers simulated a simple blackjack setup involving two players, Alice and Bob, playing cooperatively against the dealer. They programmed Alice to consistently bet low, with the main objective of helping Bob, who could hit or stand based on any information he gained from Alice.
    The researchers considered how three different scenarios might help the players win over the dealer: a classical card-counting scenario without communication; a best-case scenario in which Alice simply shows Bob her face-down card, demonstrating the best that a team can do in playing against the dealer; and lastly, a quantum entanglement scenario.
    In the quantum scenario, the researchers formulated a mathematical model to represent a quantum system, which can be thought of abstractedly as a box with many “buttons,” or measurement choices, that is shared between Alice and Bob.
    For instance, if Alice’s face-down card is a 5, she can push a particular button on the quantum box and use its output to inform her usual choice of whether to hit or stand. Bob, in turn, looks at his face-down card when deciding which button to push on his quantum box, as well as whether to use the box at all. In the cases where Bob uses his quantum box, he can combine its output with his observation of Alice’s strategy to decide his own move. This extra information — not exactly the value of Alice’s card, but more information than a random guess — can help Bob decide whether to hit or stand.
    The researchers ran all three scenarios, with many combinations of cards between each player and the dealer, and with increasing number of cards left in the dealer’s deck, to see how often Alice and Bob could win against the dealer.
    After running thousands of rounds for each of the three scenarios, they found that the players had a slight advantage over the dealer in the quantum entanglement scenario, compared with the classical card-counting strategy, though only when a handful of cards were left in the dealer’s deck.
    “As you increase the deck and therefore increase all the possibilities of different cards coming to you, the fact that you know a little bit more through this quantum process actually gets diluted,” Formaggio explains.
    Nevertheless, Harrow notes that “it was surprising that these problems even matched, that it even made sense to consider entangled strategy in blackjack.”
    Do these results mean that future blackjack teams might use quantum strategies to their advantage?
    “It would require a very large investor, and my guess is, carrying a quantum computer in your backpack will probably tip the house,” Formaggio says. “We think casinos are safe right now from this particular threat.” More

  • in

    When Dirac meets frustrated magnetism

    The fields of condensed matter physics and material science are intimately linked because new physics is often discovered in materials with special arrangements of atoms. Crystals, which have repeating units of atoms in space, can have special patterns which result in exotic physical properties. Particularly exciting are materials which host multiple types of exotic properties because they give scientists the opportunity to study how those properties interact with and influence each other. The combinations can give rise to unexpected phenomena and fuel years of basic and technological research.
    In a new study published in Science Advances this week, an international team of scientists from the USA, Columbia, Czech Republic, England, and led by Dr. Mazhar N. Ali at the Max Planck Institute of Microstructure Physics in Germany, has shown that a new material, KV3Sb5, has a never-seen-before combination of properties that results in one of the largest anomalous Hall effects (AHEs) ever observed; 15,500 siemens per centimeter at 2 Kelvin.
    Discovered in the lab of co-author Prof. Tyrel McQueen at Johns Hopkins University, KV3Sb5 combines four properties into one material: Dirac physics, metallic frustrated magnetism, 2D exfoliability (like graphene), and chemical stability.
    Dirac physics, in this context, relates to the fact that the electrons in KV3Sb5 aren’t just your normal run-of-the-mill electrons; they are moving extremely fast with very low effective mass. This means that they are acting “light-like”; their velocities are becoming comparable to the speed of light and they are behaving as though they have only a small fraction of the mass which they should have. This results in the material being highly metallic and was first shown in graphene about 15 years ago.
    The “frustrated magnetism” arises when the magnetic moments in a material (imagine little bar magnets which try to turn each other and line up North to South when you bring them together) are arranged in special geometries, like triangular nets. This scenario can make it hard for the bar magnets to line up in way that they all cancel each other out and are stable. Materials exhibiting this property are rare, especially metallic ones. Most frustrated magnet materials are electrical insulators, meaning that their electrons are immobile. “Metallic frustrated magnets have been highly sought after for several decades. They have been predicted to house unconventional superconductivity, Majorana fermions, be useful for quantum computing, and more,” commented Dr. Ali.
    Structurally, KV3Sb5 has a 2D, layered structure where triangular vanadium and antimony layers loosely stack on top of potassium layers. This allowed the authors to simply use tape to peel off a few layers (a.k.a. flakes) at a time. “This was very important because it allowed us to use electron-beam lithography (like photo-lithography which is used to make computer chips, but using electrons rather than photons) to make tiny devices out of the flakes and measure properties which people can’t easily measure in bulk.” remarked lead author Shuo-Ying Yang, from the Max Planck Institute of Microstructure Physics. “We were excited to find that the flakes were quite stable to the fabrication process, which makes it relatively easy to work with and explore lots of properties.”
    Armed with this combination of properties, the team first chose to look for an anomalous Hall effect (AHE) in the material. This phenomenon is where electrons in a material with an applied electric field (but no magnetic field) can get deflected by 90 degrees by various mechanisms. “It had been theorized that metals with triangular spin arrangements could host a significant extrinsic effect, so it was a good place to start,” noted Yang. Using angle resolved photoelectron spectroscopy, microdevice fabrication, and a low temperature electronic property measurement system, Shuo-Ying and co-lead author Yaojia Wang (Max Planck Institute of Microstructure Physics) were able to observe one of the largest AHE’s ever seen.
    The AHE can be broken into two general categories: intrinsic and extrinsic. “The intrinsic mechanism is like if a football player made a pass to their teammate by bending the ball, or electron, around some defenders (without it colliding with them),” explained Ali. “Extrinsic is like the ball bouncing off of a defender, or magnetic scattering center, and going to the side after the collision. Many extrinsically dominated materials have a random arrangement of defenders on the field, or magnetic scattering centers randomly diluted throughout the crystal. KV3Sb5 is special in that it has groups of 3 magnetic scattering centers arranged in a triangular net. In this scenario, the ball scatters off of the cluster of defenders, rather than a single one, and is more likely to go to the side than if just one was in the way.” This is essentially the theorized spin-cluster skew scattering AHE mechanism which was demonstrated by the authors in this material. “However the condition with which the incoming ball hits the cluster seems to matter; you or I kicking the ball isn’t the same as if, say, Christiano Ronaldo kicked the ball,” added Ali. “When Ronaldo kicks it, it is moving way faster and bounces off of the cluster with way more velocity, moving to the side faster than if just any average person had kicked it. This is, loosely speaking, the difference between the Dirac quasiparticles (Ronaldo) in this material vs normal electrons (average person) and is related to why we see such a large AHE,” Ali laughingly explained.
    These results may also help scientists identify other materials with this combination of ingredients. “Importantly, the same physics governing this AHE could also drive a very large spin Hall effect (SHE) — where instead of generating an orthogonal charge current, an orthogonal spin current is generated,” remarked Wang. “This is important for next-generation computing technologies based on an electron’s spin rather than its charge.”
    “This is a new playground material for us: metallic Dirac physics, frustrated magnetism, exfoliatable, and chemically stable all in one. There is a lot of opportunity to explore fun, weird phenomena, like unconventional superconductivity and more,” said Ali, excitedly. More

  • in

    How human sperm really swim: New research challenges centuries-old assumption

    A breakthrough in fertility science by researchers from Bristol and Mexico has shattered the universally accepted view of how sperm ‘swim’.
    More than three hundred years after Antonie van Leeuwenhoek used one of the earliest microscopes to describe human sperm as having a “tail, which, when swimming, lashes with a snakelike movement, like eels in water,” scientists have revealed this is an optical illusion.
    Using state-of-the-art 3D microscopy and mathematics, Dr Hermes Gadelha from the University of Bristol, Dr Gabriel Corkidi and Dr Alberto Darszon from the Universidad Nacional Autonoma de Mexico, have pioneered the reconstruction of the true movement of the sperm tail in 3D.
    Using a high-speed camera capable of recording over 55,000 frames in one second, and a microscope stage with a piezoelectric device to move the sample up and down at an incredibly high rate, they were able to scan the sperm swimming freely in 3D.
    The ground-breaking study, published in the journal Science Advances, reveals the sperm tail is in fact wonky and only wiggles on one side. While this should mean the sperm’s one-sided stroke would have it swimming in circles, sperm have found a clever way to adapt and swim forwards.
    “Human sperm figured out if they roll as they swim, much like playful otters corkscrewing through water, their one-sided stoke would average itself out, and they would swim forwards,” said Dr Gadelha, head of the Polymaths Laboratory at Bristol’s Department of Engineering Mathematics and an expert in the mathematics of fertility.

    advertisement

    “The sperms’ rapid and highly synchronised spinning causes an illusion when seen from above with 2D microscopes — the tail appears to have a side-to-side symmetric movement, “like eels in water,” as described by Leeuwenhoek in the 17th century.
    “However, our discovery shows sperm have developed a swimming technique to compensate for their lop-sidedness and in doing so have ingeniously solved a mathematical puzzle at a microscopic scale: by creating symmetry out of asymmetry,” said Dr Gadelha.
    “The otter-like spinning of human sperm is however complex: the sperm head spins at the same time that the sperm tail rotates around the swimming direction. This is known in physics as precession, much like when the orbits of Earth and Mars precess around the sun.”
    Computer-assisted semen analysis systems in use today, both in clinics and for research, still use 2D views to look at sperm movement. Therefore, like Leeuwenhoek’s first microscope, they are still prone to this illusion of symmetry while assessing semen quality. This discovery, with its novel use of 3D microscope technology combined with mathematics, may provide fresh hope for unlocking the secrets of human reproduction.
    “With over half of infertility caused by male factors, understanding the human sperm tail is fundamental to developing future diagnostic tools to identify unhealthy sperm,” adds Dr Gadelha, whose work has previously revealed the biomechanics of sperm bendiness and the precise rhythmic tendencies that characterise how a sperm moves forward.
    Dr Corkidi and Dr Darszon pioneered the 3D microscopy for sperm swimming.
    “This was an incredible surprise, and we believe our state-of the-art 3D microscope will unveil many more hidden secrets in nature. One day this technology will become available to clinical centres,” said Dr Corkidi.
    “This discovery will revolutionize our understanding of sperm motility and its impact on natural fertilization. So little is known about the intricate environment inside the female reproductive tract and how sperm swimming impinge on fertilization. These new tools open our eyes to the amazing capabilities sperm have,” said Dr Darszon. More

  • in

    NASA sun data helps new model predict big solar flares

    Using data from NASA’s Solar Dynamics Observatory, or SDO, scientists have developed a new model that successfully predicted seven of the Sun’s biggest flares from the last solar cycle, out of a set of nine. With more development, the model could be used to one day inform forecasts of these intense bursts of solar radiation.
    As it progresses through its natural 11-year cycle, the Sun transitions from periods of high to low activity, and back to high again. The scientists focused on X-class flares, the most powerful kind of these solar fireworks. Compared to smaller flares, big flares like these are relatively infrequent; in the last solar cycle, there were around 50. But they can have big impacts, from disrupting radio communications and power grid operations, to — at their most severe — endangering astronauts in the path of harsh solar radiation. Scientists who work on modeling flares hope that one day their efforts can help mitigate these effects.
    Led by Kanya Kusano, the director of the Institute for Space-Earth Environmental Research at Japan’s Nagoya University, a team of scientists built their model on a kind of magnetic map: SDO’s observations of magnetic fields on the Sun’s surface. Their results were published in Science on July 30, 2020.
    It’s well-understood that flares erupt from hot spots of magnetic activity on the solar surface, called active regions. (In visible light, they appear as sunspots, dark blotches that freckle the Sun.) The new model works by identifying key characteristics in an active region, characteristics the scientists theorized are necessary to setting off a massive flare.
    The first is the initial trigger. Solar flares, especially X-class ones, unleash huge amounts of energy. Before an eruption, that energy is contained in twisting magnetic field lines that form unstable arches over the active region. According to the scientists, highly twisted rope-like lines are a precursor for the Sun’s biggest flares. With enough twisting, two neighboring arches can combine into one big, double-humped arch. This is an example of what’s known as magnetic reconnection, and the result is an unstable magnetic structure — a bit like a rounded “M” — that can trigger the release of a flood of energy, in the form of a flare.
    Where the magnetic reconnection happens is important too, and one of the details the scientists built their model to calculate. Within an active region, there are boundaries where the magnetic field is positive on one side and negative on the other, just like a regular refrigerator magnet.
    “It’s similar to an avalanche,” Kusano said. “Avalanches start with a small crack. If the crack is up high on a steep slope, a bigger crash is possible.” In this case, the crack that starts the cascade is magnetic reconnection. When reconnection happens near the boundary, there’s potential for a big flare. Far from the boundary, there’s less available energy, and a budding flare can fizzle out — although, Kusano pointed out, the Sun could still unleash a swift cloud of solar material, called a coronal mass ejection.
    Kusano and his team looked at the seven active regions from the last solar cycle that produced the strongest flares on the Earth-facing side of the Sun (they also focused on flares from part of the Sun that is closest to Earth, where magnetic field observations are best). SDO’s observations of the active regions helped them locate the right magnetic boundaries, and calculate instabilities in the hot spots. In the end, their model predicted seven out of nine total flares, with three false positives. The two that the model didn’t account for, Kusano explained, were exceptions to the rest: Unlike the others, the active region they exploded from were much larger, and didn’t produce a coronal mass ejection along with the flare.
    “Predictions are a main goal of NASA’s Living with a Star program and missions,” said Dean Pesnell, the SDO principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who did not participate in the study. SDO was the first Living with a Star program mission. “Accurate precursors such as this that can anticipate significant solar flares show the progress we have made towards predicting these solar storms that can affect everyone.”
    While it takes a lot more work and validation to get models to the point where they can make forecasts that spacecraft or power grid operators can act upon, the scientists have identified conditions they think are necessary for a major flare. Kusano said he is excited to have a promising first result.
    “I am glad our new model can contribute to the effort,” he said. More

  • in

    To save Appalachia’s endangered mussels, scientists hatched a bold plan

    The emergency surgery took place in the back of a modified pickup truck in a McDonald’s parking lot in Pikeville, Ky. This scrappy plan to rescue a species of mussel on the edge of extinction made perfect sense: Meet somewhere between Indian Creek in Virginia, where the last known wild golden riffleshells lived, and Kentucky’s Center for Mollusk Conservation in Frankfort, where they would be saved.
    The strategy was a malacologist’s version of a Hail Mary pass. One scientist would gingerly pry open three golden riffleshells and remove their larvae to be nurtured in his lab. The other would return the three mussels to Indian Creek, and wait for the day he could introduce their grown offspring to the same habitat. If the plan didn’t produce enough offspring to sustain a new population, the mussels would probably vanish.
    Five years ago, Indian Creek was the only known remaining habitat for the golden riffleshell (Epioblasma florentina aureola). And like many other mussels, this bivalve’s future looked bleak. Biologists estimated that only about 100 remained in the wild. “They were the next species on the list for disappearing from the face of the Earth,” says biologist Tim Lane, who leads mussel recovery efforts at the Virginia Department of Wildlife Resources’ Aquatic Wildlife Conservation Center, near Marion. “We were literally watching the last of them.”
    Seeing a species vanish in real time is difficult, he says, and is in some ways worsened by the mussels’ near-invisibility beneath the surface. “They’re not charismatic like, say, the northern white rhino,” he says. When mussels go extinct, almost no one knows — or mourns them.
    The survival of mussel 6420 and thousands of its siblings started with an interstate rescue plan hatched by biologist Tim Lane.Gary Peeples/USFWS
    An avid amateur photographer who takes pictures of mollusks, snails, fish and various other small critters in the wild, Lane spends much of his time floating facedown in Appalachian waterways, suspended over rocky riverbeds like a float in the Macy’s Thanksgiving Day Parade. He came up with the plan and carried out phase one: delicately prying the bivalves from the Indian Creek river-bed and laying them in a cooler filled with pebbles, dirt and river water for the 90-minute trip to Kentucky.
    A full-grown golden riffleshell is about the size of a small biscuit, with a yellowy, fan-shaped case. Like other mussels, it anchors itself in gravel with a fleshy foot and rarely moves more than a few meters during its lifetime, which could last 15 years or more. The sedentary creatures have been listed as a federally endangered species since 1977.
    Malacologists, like Lane and others who study mollusks, are accustomed to championing underdogs. More than two-thirds of all identified North American freshwater mussel species are extinct or endangered. North America has the greatest diversity of freshwater mussels — with a heavy concentration in the Southeast. Tennessee’s Clinch River hosts about twice as many species as all of Europe.

    Trustworthy journalism comes at a price.

    Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen – every contribution makes a difference.

    Subscribe or Donate Now

    In every locale, the mussels’ problems arise from a mix of factors. Until about a century ago, enormous mussel populations thrived in the Midwest and Southeast, and mussels were often harvested to make shell buttons. But the construction of dams in major rivers divided these populations and separated the creatures from the fish that carry their larvae. “The dams suffocated the huge mussel beds in the most productive habitats,” says Paul Johnson, who runs Alabama’s Aquatic Biodiversity Center, in Perry County.
    Adding insult to injury, rampant pollution from industrial dumping and chemical spills led to massive die-offs before the 1972 Clean Water Act led to cleaner waterways. The animals have faced other threats, too, including microbial pathogens and predators.
    Just last December, more than 150 kilometers downstream of the confluence of Indian Creek and the Clinch, biologists with the U.S. Fish and Wildlife Service reported a massive die-off of pheasantshells (Actinonaias pectorosa) where the river passes through the town of Kyles Ford, Tenn. The researchers suspect some pathogenic fungi, bacteria or parasites are to blame. Myriad species in Europe and the Pacific Northwest, including the freshwater pearl mussel (Margaritifera margaritifera) and the depressed river mussel (Pseudanodonta complanata), have experienced similar die-offs.
    Against that backdrop of known and unknown hazards, researchers around the world are combining in vitro propagation, months of tedious observation and exhaustive laboratory trial and error to save these animals. But none of these evolving methods offer a quick fix.
    “It took us 100 years to get into this mess,” Johnson says. “It’s not going to take 10 to get out of it.”
    A small group of biologists is getting creative to save freshwater mussels, animals that do a yeoman’s job of cleaning rivers.Gary Peeples/USFWS
    River cleaners
    Those who study and try to save mussels feel an irresistible calling, says Jessi DeMartini, a biologist in Illinois who works on mussel conservation in the Forest Preserve District of DuPage County. “It’s an addiction … that becomes a passion.” They see mollusks as the uncelebrated heroes of the world’s rivers.
    Mollusk shells stabilize riverbeds and create habitats for other creatures. The bivalves provide food to raccoons, muskrats and other critters. Most importantly, mollusks are nature’s water filters, able to clean up big messes.
    A single mussel can filter more than 50 liters of water per day, removing algae and pollution, including toxic substances dumped into rivers as industrial waste. Some researchers suspect that the ability to sop up toxic metals is contributing to the animals’ decline. Like canaries in coal mines, if a mussel population suddenly plummets, it’s a sign that something’s gone foul in the water. (Malacologists describe the smell of a living mussel as rich and sweet, like the river it comes from. But find a dead mussel and the stench is so bad you’d wish you had been born without a sense of smell.)

    By observing the health of juvenile mussels and analyzing tissue samples, researchers can effectively monitor water quality and acute die-offs, Monte McGregor, director of Kentucky’s Center for Mollusk Conservation, and others reported in December 2019 in Freshwater Science.
    The effort to save mussels has implications far beyond the rural and rugged riverways of Appalachia. More than two-thirds of U.S. homes get their drinking water from rivers, Johnson notes. Mussels provide an inexpensive way to safeguard that resource and do some of the work of water treatment plants. “Mussels allow us to provide cleaner water on a less per-cost basis,” he says.
    For all these reasons, conservation biologists keep returning to the rivers and take hope where they can find it. The golden riffleshell has been particularly vexing. To even begin the process of mussel propagation, which has a high rate of failure, biologists typically need to start with larvae, also known as glochidia. The golden riffleshell’s dwindling numbers mean that finding a gravid female — one filled with glochidia — is a rare occasion. But on an April morning in 2016, hope came with a find by Sarah Colletti, a mussel-loving biologist also at Virginia’s Aquatic Wildlife Conservation Center. Colletti had joined a small squad of biologists who donned tall rubber waders and spent hours hunched over viewscopes, which look like toy telescopes, pointed down into water to make it easy to tell rocks from mussels. Colletti was scanning the bottom of Indian Creek as part of what’s become an annual ritual, the search for the last remaining golden riffleshells.
    Biologist Sarah Colletti found three gravid golden riffleshell females in Virginia’s Indian Creek in 2016, setting off a chain of events that might give the endangered species a chance at survival.G. Peeples/USFWS
    It’s a monotonous pursuit, she says, and “you’re second-guessing every rock.” When a mussel comes into view, “it’s kind of shocking.”
    Through her viewscope, Colletti spotted three golden riffleshells nestled among the rocks and silt. All were females displaying their lure, a section of tissue that resembles a tasty meal. Those exposed lures meant the mussels were gravid, ready to release millions of glochidia. Finding three gravid females was unusual. The biologists saw an opportunity — maybe one of the last — to help.
    Alluring display
    Just getting to the larval stage is an accomplishment for these bivalves. Eggs become fertilized only when females filter sperm released into the water by upstream males.
    Glochidia, each the size of a grain of salt, can’t survive on their own. They have to clamp onto the gills of a host fish and become parasitic passengers, embedding themselves in the gill tissue and thriving on a mix of nutrients in the water and in fish blood until undergoing a kind of metamorphosis.
    As mussels grow their first shells and become juveniles, they swell to the size of a well-fed deer tick, then drop from the fish. For each species of mussel, there’s often only one — or at most, a few — species of fish that can ferry larvae to the next stage of life.
    Mussels have evolved a staggering array of methods for infesting fish; almost all involve deception. Some mussels disguise their glochidia in alluring packages that look like minnows; others unspool wormlike appendages tipped with packets holding millions of larvae. The rainbow mussel (Villosa iris) has a lure that looks like a crawfish skittering along the river floor. When a fish tries to eat the minnow or worm or crawfish, the fish gets a mouthful of glochidia, released like dandelion seeds. With the fish’s next gulp of water, the glochidia wash over the gills and stick.
    What looks like a tasty, spotted minnow is actually part of a Lampsilis mussel. When a fish goes in for a bite of this lure, it inhales a mouthful of mussel larvae that attach to the fish’s gills and grow into juveniles.M. Christopher Barnhart
    Members of the genus Epioblasma, including the golden riffleshell, have perfected a tactic that earned them the nickname “fish snapper.” The ritual begins when a mother mussel sends out a short thread, the end of which looks like a bug. When a hungry fish swims in for a bite, the shell snaps shut around the fish’s head and holds tight with short, sharp teeth just inside the shell’s rim. As the fish chokes, it inhales the glochidia, which install themselves in the gills. After a few minutes, the mussel relaxes and releases its captive. The fish that survive are stunned; smaller fish (which aren’t good hosts anyway) may die, their heads crushed by the mollusk’s snap.
    The handoff
    All the pieces of this choreographed sequence — fertilization to glochidia formation to infestation of a host — have to happen in just the right way, says McGregor, who with fellow Kentucky biologist Leroy Koch was waiting at the McDonald’s for Lane to arrive. “There are lots of strikes against these mussels,” he says. “The glochidia have to hit the right fish at the right time.”
    Ideally, mussels would reproduce on their own and people wouldn’t have to intervene. Malacologists step in when a species looks like it’s on the brink of extinction.

    A snuffbox mussel snaps shut on the head of a rainbow darter, giving the snuffbox larvae, or glochidia, enough time to attach to the fish’s gills.M. Christopher Barnhart
    A closeup photo shows nearly clear glochidia of an oyster mussel attached to the pink gills of a logperch.M. Christopher Barnhart

    That morning in April, Colletti marked the location of the mussels in the stream with three large stones and a bright orange flag. She phoned Lane, who had spent much of graduate school studying the diversity of life in Appalachian rivers. The golden riffleshell always seemed to be foundering. In previous years, when they found gravid females in Indian Creek, Lane and colleagues had attempted streamside infestations: catching host fish and manually transferring glochidia from the mussel into the fish gills. But the approach didn’t work.
    Lane called McGregor, who was well-known in the close-knit malacology community for having pioneered in vitro approaches to bring bivalves back. Biologists have sent him glochidia in test tubes via UPS and FedEx; he’s also been known to drive for hours to secure the larvae. At Kentucky’s Center for Mollusk Conservation, he closely monitors the temperature and quality of the water that flows through the lab, and he makes his own food for the mussels — often customizing a recipe to fit the needs of a species. After Lane called and proposed the plan, McGregor agreed to meet in Pikeville and carry out the glochidia-removing procedure in what he calls his “mobile lab” (the topped bed of his Ford F-250 super duty crew cab).
    Surgery took no more than 30 minutes per mussel. McGregor pried open the shell about five millimeters with his fingers, and used a silicone wedge to keep it open. Then, he filled a syringe with sterile water and flushed out the glochidia from the mussels into a lab dish. All the while, he had to pay attention to the patient and keep it cool.
     “You have to handle the mussel properly,” McGregor says. If the animal gets too warm, that could imperil both the larvae and the mother.
    Once the procedure was over, Lane replaced the mussels in the cooler and drove east to return them to Indian Creek. McGregor drove west, escorting thousands of golden rifflleshell larvae over 260 kilometers of twisting mountain roads, to the mussel recovery operation with the longest track record for propagating mussels in the lab without host fish. This would be the golden riffleshell’s best chance at survival.
    Take me to the river
    For nearly 20 years, researchers at the Kentucky facility have worked on bringing mussels back from the brink of extinction. The small collection of buildings sits near Elkhorn Creek, but McGregor says the water is often too polluted to use for the tanks that hold mussels during the most sensitive part of their development. The pollutants include raw sewage. “We can’t grow mussels in raw sewage,” he says.
    If such a thing as “artisanal algae” exists, it’s surely the stuff grown in this lab. Researchers grow algal cultures in giant incubators. McGregor has grown many algal varieties and has spent years matching the right algal slime to the right mussel.

    Biologists have developed methods of propagating endangered mussel species in the lab, even without the host fish. To remove glochidia, scientists first pry open the shell.T. Lane
    Then a scientist holds open the mussel shell with a silicone wedge to flush out the larvae with sterile water.T. Lane

    McGregor learned the basics of in vitro propagation in 2004 from Robert Hudson, a malacologist at Presbyterian College in Clinton, S.C. By 2016, McGregor had spent more than a decade improving his recipe, finding the right mix of algae, nutrients and rabbit serum to feed glochidia. Although he prefers to use host fish to grow mussels — and the lab contains dozens of tanks that hold fish as hosts for some other species — scientists have so far been unable to identify the fish that can carry golden riffleshell larvae (which is why streamside infestation doesn’t work).
    So McGregor had to grow the larvae without a host. After 18 days in an incubator with McGregor’s custom-made mussel-growing cocktail, about 1,600 larvae survived to become juveniles. They were transferred to silt-lined raceways with cool flowing water to simulate a river. Within a few months, the glochidia had grown to the size of nickels — large enough to survive in the wild.
    McGregor divided the spoils. “It was too risky for me to keep them all,” he says. He sent groups of mussels back over the mountains to two facilities in Virginia. One is the Aquatic Wildlife Conservation Center, where Colletti and colleagues have been studying and cultivating the bivalves. In a typical year, researchers there release up to 10,000 lab-grown mussels into the wild, representing up to 10 species.
    Colletti says she sees signs of hope for the golden riffleshell. Today, the progeny of those three mussels she found in 2016 are producing their own glochidia in the lab. “They were able to become gravid in captivity,” she says. Lane recently sent photos of those larval grandchildren to McGregor. Colletti and Lane hope the young mussels released into the river will do as well.
    There are other, scattered success stories emerging from recent mussel projects. Johnson, in Alabama, has spent years studying the pale lilliput (Toxolasma cylindrellus).
    After more than two years of work, Johnson pegged the northern studfish (Fundulus catenatus), which looks like a larger, prettier version of a minnow, as the pale lilliput’s host. Once he made that connection, Johnson began to infest a host fish to cultivate new populations of the endangered species.
    There are also big risks. Last year, Johnson propagated about 5,000 juveniles of the rare Louisiana pearshell mussel (Margaritifera hembeli). But just before he was going to release juveniles into a Louisiana river, disaster struck. On an unusually hot spring morning, the temperature of the water streaming into his facility’s raceways soared, killing thousands of the mussels before a researcher could close the valve. “One bad day can literally wreck several years of work,” Johnson says.
    He was left with only about 100 animals to return to nature. But those animals have been thriving in the lab. Johnson has grown new batches and plans to restore them to their natural habitat next year. It’s too soon to declare victory, he says, but he’s hopeful.
    This gravid golden riffleshell began as a larva in Indian Creek, grew up in a Kentucky lab and is now in a Virginia lab. Its parted shell reveals pouches containing tiny larvae ready to infest an unwitting host fish.T. Lane
    The ultimate goal in mussel conservation, Johnson says, is to propagate animals that can complete an entire life cycle. That means glochidia get to the host fish, survive the tumultuous juvenile years and mature enough to reproduce. In the wild, the whole process takes a few weeks to a few months. In the lab, the timescale is bigger. “It’s a decadeslong effort,” he says.
    Hundreds of the next generation of golden riffleshells are now back at home, with two populations in the Clinch River and one in Indian Creek since 2017. These mussels now measure about the size of a quarter, though some are bigger. Of the 700 that Lane, Colletti and others installed in the wild, many have died and some are unaccounted for, but the researchers estimate that about 300 are still alive.
    The scientists placed transponders on about 100 of the mussels, and every year Lane and Colletti return for a census, waving a device that looks like a metal detector over the water surface and waiting for the satisfying chirp that indicates a lab-grown riffleshell is found.
    For now, the rescue of the golden riffleshell remains a good news story, but Lane says malacologists have to remain vigilant. “This gives us some time, but it’s not like we can pat ourselves on the back and stop.” To ensure the survival of the species, biologists will need to continue harvesting glochidia, shepherding mussels to the juvenile stage and returning them to the wild, year after year. The ultimate goal is to build a population that can sustain itself and reproduce without human intervention, rabbit serum or emergency surgery outside a rural McDonald’s. More