More stories

  • in

    50 years ago, scientists caught their first glimpse of amino acids from outer space

    Amino acids in a meteorite — Science News, December 5, 1970
    [Researchers] present evidence for the presence of amino acids of possible extraterrestrial origin in a meteorite that fell near Murchison, Victoria, Australia, Sept. 28, 1969.… If over the course of time their finding becomes accepted … it would demonstrate that amino acids, the basic building blocks of proteins, can be and have been formed outside the Earth.
    Update
    Scientists confirmed in 1971 that the Murchison meteorite contained amino acids, primarily glycine, and that those organic compounds likely came from outer space (SN: 3/20/71, p. 195). In the decades since, amino acids and other chemical precursors to life have been uncovered in other fallen space rocks. Recent discoveries include compounds called nucleobases and sugars that are key components of DNA and RNA. The amino acid glycine even has been spotted in outer space in the atmosphere of comet 67P/Churyumov-Gerasimenko. Such findings bolster the idea that life could exist elsewhere in the universe. More

  • in

    China is about to collect the first moon rocks since the 1970s

    For the first time in almost half a century, scientists are going to get their hands on new moon rocks.
    The Chinese space agency’s Chang’e-5 spacecraft, which landed on the moon around 10:15 a.m. EST December 1, will scoop up lunar soil from a never-before-visited region and bring it back to Earth a few weeks later. Those samples could provide details about an era of lunar history not touched upon by previous moon missions.
    “We’ve been talking since the Apollo era about going back and collecting more samples from a different region,” says planetary scientist Jessica Barnes of the University of Arizona in Tucson, who works with lunar samples from the American and Soviet Union missions of the 1960s and 1970s. “It’s finally happening.”
    Chang’e-5, the latest in a series of missions named for the Chinese moon goddess (SN: 11/11/18), took off from the China National Space Administration’s launch site in the South China Sea on November 23 and landed in volcanic flatlands on the northwest region of the moon’s nearside.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The lander, equipped with a scoop and a drill, will collect about two kilograms of soil and small rocks, possibly from as deep as two meters below the moon’s surface, says planetary scientist Long Xiao of China University of Geosciences in Wuhan.
    The spacecraft has to work fast. With no internal heating mechanism, it has no defenses against the extremely cold lunar night, which can reach –170° Celsius. The entire mission has to fit within one lunar day, about 14 Earth days.
    After the lander collects the sample, a small rocket will bring the lander and the sample back to the orbiter perhaps as early as December 3, although the Chinese space agency has not released the official schedule.
    Once in orbit, the moon material will be packaged into a return capsule and sent back to Earth. The capsule is expected to land in the Inner Mongolia region by December 17.
    The last time new lunar samples were sent back to Earth was 1976, with the end of the Soviet Union’s Luna program. Between those missions and NASA’s Apollo missions, scientists on Earth have about 380 kilograms of moon material to study (SN: 7/15/19). “Perhaps for a long time people thought, been there, done that, when it comes to the moon,” Barnes says.
    Two kilograms of new stuff might not sound like much next to what’s already in hand. But Chang’e-5 is returning samples from an entirely unexplored region. The landing site is in the Mons Rümker region in the northwest region of the nearside of the moon. Like the Apollo and Luna landing sites, Rümker is flat. “The engineering consideration is first, to be safe,” Xiao says.

    All the Apollo and Luna missions visited ancient volcanic plains, where the rocks are between 3 billion and 4 billion years old. Rümker’s volcanic rocks are much younger, around 1.3 billion to 1.4 billion years old. In the ‘60s, scientists didn’t think the moon was still volcanically active that late. More recent studies from lunar orbit and from telescopes have suggested a more complicated volcanic past.
    “With these new samples, we potentially add another pinpoint in our geologic history of the moon,” says Barnes. “We’ll get an idea of, what was the volcanic history like on the moon a billion years ago? That’s something we don’t have access to in the returned samples we already have.”
    The Rümker region is also rich in potassium, rare-Earth elements and phosphorous, often called KREEP elements. Those elements were some of the last to crystalize out of the magma ocean that covered the young moon and can help reveal details of how that process happened. It’s an “exotic flavor” of material, says Barnes. “It’s a really different area, geochemically, to the rest of the moon.”
    One of the biggest challenges for the mission will be drilling that material. The drill can’t change direction once it’s deployed, so it has to attempt to drill through anything directly below it. If the drill hits a large rock, it could fail. So the Chang’e-5 team is hoping for fine, loose soil, Long says.
    Once the sample is back on Earth, it will be stored and cataloged at a curation center in Beijing. Then it will be distributed for scientists to do research.
    “You can’t breathe easy on these types of missions until the samples are back and are safe in the curation place where they’re going to be held,” Barnes says.
    The Chinese space agency plans to share samples with international scientists. A 2011 congressional rule makes it difficult for U.S. scientists to collaborate directly with China, so it’s unclear who will get to work with the rocks. But the discoveries that the new samples will enable go beyond international borders.
    “It doesn’t matter who’s doing it,” says Barnes. “The whole world should be behind this mission and this endeavor. It’s a piece of history.” More

  • in

    Farming on Mars will be a lot harder than ‘The Martian’ made it seem

    In the film The Martian, astronaut Mark Watney (played by Matt Damon) survives being stranded on the Red Planet by farming potatoes in Martian dirt fertilized with feces.
    Future Mars astronauts could grow crops in dirt to avoid solely relying on resupply missions, and to grow a greater amount and variety of food than with hydroponics alone (SN: 11/4/11). But new lab experiments suggest that growing food on the Red Planet will be a lot more complicated than simply planting crops with poop (SN: 9/22/15).
    Researchers planted lettuce and the weed Arabidopsis thaliana in three kinds of fake Mars dirt. Two were made from materials mined in Hawaii or the Mojave Desert that look like dirt on Mars. To mimic the makeup of the Martian surface even more closely, the third was made from scratch using volcanic rock, clays, salts and other chemical ingredients that NASA’s Curiosity rover has seen on the Red Planet (SN: 1/31/19). While both lettuce and A. thaliana survived in the Marslike natural soils, neither could grow in the synthetic dirt, researchers report in the upcoming Jan. 15 Icarus.
    “It’s not surprising at all that as you get [dirt] that’s more and more accurate, closer to Mars, that it gets harder and harder for plants to grow in it,” says planetary scientist Kevin Cannon of the Colorado School of Mines in Golden, Colo., who helped make the synthetic Mars dirt but wasn’t involved in the new study.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Soil on Earth is full of microbes and other organic matter that helps plants grow, but Mars dirt is basically crushed rock. The new result “tells you that if you want to grow plants on Mars using soil, you’re going to have to put in a lot of work to transform that material into something that plants can grow in,” Cannon says.
    Biochemist Andrew Palmer and colleagues at the Florida Institute of Technology in Melbourne planted lettuce and A. thaliana seeds in imitation Mars dirt under controlled lighting and temperature indoors, just as astronauts would on Mars. The plants were cultivated at 22° Celsius and about 70 percent humidity.
    Seeds of both species germinated and grew in dirt mined from Hawaii or the Mojave Desert, as long as the plants were fertilized with a cocktail of nitrogen, potassium, calcium and other nutrients. No seeds of either species could germinate in the synthetic dirt, so “we would grow up plants under hydroponic-like conditions, and then we would transfer them” to the artificial dirt, Palmer says. But even when given fertilizer, those seedlings died within a week of transplanting.
    In lab experiments, lettuce was able to grow in Marslike soil from the Mojave Desert (pictured) as long as the soil was fertilized with nitrogen, potassium, calcium and other nutrients.Nathan Hadland
    Palmer’s team suspected that the problem with the synthetic Mars dirt was its high pH, which was about 9.5. The two natural soils had pH levels around 7. When the researchers treated the synthetic dirt with sulfuric acid to lower the pH to 7.2, transplanted seedlings survived an extra week but ultimately died.
    The team also ran up against another problem: The original synthetic dirt recipe did not include calcium perchlorate, a toxic salt that recent observations suggest make up to about 2 percent of the Martian surface. When Palmer’s team added it at concentrations similar to those seen on Mars, neither lettuce nor A. thaliana grew at all in the dirt.
    “The perchlorate is a major problem” for Martian farming, says Edward Guinan, an astrobiologist at Villanova University in Pennsylvania who was not involved in the work. But calcium perchlorate may not have to be a showstopper. “There are bacteria on Earth that enjoy perchlorates as a food,” Guinan says. As the microbes eat the salt, they give off oxygen. If these bacteria were taken from Earth to Mars to munch on perchlorates in Martian dirt, Guinan imagines that the organisms could not only get rid of a toxic component of the dirt, but perhaps also help produce breathable oxygen for astronauts.
    What’s more, the exact treatment required to make Martian dirt farmable may vary, depending on where astronauts make their homestead. “It probably depends where you land, what the geology and chemistry of the soil is going to be,” Guinan says.
    To explore how that variety might affect future agricultural practices, geochemist Laura Fackrell of the University of Georgia in Athens and colleagues mixed up five new types of faux Mars dirt. The recipes for these fake Martian materials, also reported in the Jan. 15 Icarus, are based on observations of Mars’ surface from the Curiosity, Spirit and Opportunity rovers, as well as NASA’s Mars Global Surveyor spacecraft and Mars Reconnaissance Orbiter.
    Each new artificial Mars dirt represents a mix of materials that could be found or made on the Red Planet. One is designed to represent the average composition across Mars, similar to the synthetic material created by Cannon’s team. The other four varieties have slightly different makeups, such as dirt that is particularly rich in carbonates or sulfates. This collection “expands the palette of what we have available” as test-beds for agricultural experiments, Fackrell says.
    She’s now using her stock to run preliminary plant growth experiments. So far, a legume called moth bean, which has similar nutritional content to a soybean but is more drought resistant, has grown the best. “But they’re not necessarily super healthy,” Fackrell says. Future experiments could explore what nutrient cocktails help plants survive in the various fake Martian terrains. But this much is clear, Fackrell says: “It’s not quite as easy as it looks in The Martian.” More

  • in

    Chemical reactions high in Mars’ atmosphere rip apart water molecules

    Mars’ water is being skimmed off the top. NASA’S MAVEN spacecraft found water lofted into Mars’ upper atmosphere, where its hydrogen and oxygen atoms are ripped apart, scientists report in the Nov. 13 Science.
    “This completely changes how we thought hydrogen, in particular, was being lost to space,” says planetary chemist Shane Stone of the University of Arizona in Tucson.
    Mars’ surface was shaped by flowing water, but today the planet is an arid desert (SN: 12/8/14). Previously, scientists thought that Mars’ water was lost in a “slow and steady trickle,” as sunlight split water in the lower atmosphere and hydrogen gradually diffused upward, Stone says.
    But MAVEN, which has been orbiting Mars since 2014, scooped up water molecules in Mars’ ionosphere, at altitudes of about 150 kilometers. That was surprising — previously the highest water had been seen was about 80 kilometers (SN: 1/22/18).
    That high-up water varied in concentration as the seasons changed on Mars, with the peak in the southern summer, when seasonal dust storms are most frequent (SN: 7/14/20). During a global dust storm in 2018, water levels jumped even higher, suggesting dust storms lift water in a “sudden splash,” Stone says.
    The top of Mars’ atmosphere is full of charged molecules that are primed for rapid chemical reactions, especially with water. So water up there is split apart quickly, on average lasting only four hours, leaving hydrogen atoms to float away (SN: 11/27/15). That process is 10 times faster than previously known ways for Mars to lose water, Stone and his colleagues calculated.
    This process could account for Mars losing the equivalent of a 44-centimeter-deep global ocean in the past billion years, plus another 17-centimeter-deep ocean during each global dust storm, the team found. That can’t explain all of Mars’ water loss, but it’s a start. More

  • in

    Jupiter’s icy moon Europa may glow in the dark

    Jupiter’s icy moon Europa could give the word “moonlight” a whole new meaning. New lab experiments suggest the nightside of this moon glows in the dark.
    Europa’s surface, thought to be mostly water ice laced with various salts, is continually bombarded with energetic electrons by Jupiter’s intense magnetic field (SN: 5/19/15). When researchers simulated that interaction in the lab by shooting electrons at salty ice samples, the ice glowed. The brightness of that glow depended on the kind of salt in the ice, researchers report online November 9 in Nature Astronomy.
    If the same interaction on Europa creates this never-before-seen kind of moonlight, a future mission there, such as NASA’s planned Europa Clipper spacecraft, may be able to use this ice glow map Europa’s surface composition. That, in turn, could give insight into the salinity of the ocean thought to lurk under Europa’s icy crust (SN: 6/14/19).
    “That has implications for the temperature of that liquid water — the freezing point; it has implications for the thickness of the ice shell; it has implications for the habitability of that liquid water,” says Jennifer Hanley, a planetary scientist at Lowell Observatory in Flagstaff, Ariz. not involved in the new work. Europa’s subsurface ocean is considered one of the most promising places to look for extraterrestrial life in the solar system (SN: 4/8/20).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The discovery of Europa’s potential ice glow “was serendipity,” says Murthy Gudipati, who studies the physics and chemistry of ices at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Gudipati and colleagues originally set out to investigate how electron bombardment might change the chemistry of Europa’s surface ice. But in video footage of their initial experiments, the team noticed that ice samples pelted with electrons gave off an unexpected glow.
    Intrigued, the researchers turned their electron beam on samples of pure water ice, as well as water ice mixed with different salts. Each ice core was cooled to the surface temperature of Europa (about –173° Celsius) and showered with electrons that had the same energies as those that strike Europa. Over 20 seconds of irradiation, a spectrometer measured the wavelengths of light, or spectrum, given off by the ice.
    The ice samples all gave off a whitish glow, because they emitted light at many different wavelengths. But the brightness of each ice sample depended on its composition. Ice containing sodium chloride, also known as table salt, or sodium carbonate appeared dimmer than pure water ice. Ice mixed with magnesium sulfate, on the other hand, was brighter.

    “I was doing some back of the envelope calculations [of] what would be the brightness of Europa, if we were to be standing on it in the dark,” Gudipati says. “It’s approximately … as bright as me walking on the beach in full moonlight.”
    Based on the specs proposed for a camera to fly on the Europa Clipper mission, Gudipati and colleagues estimate that the spacecraft could see Europa’s ice glow during a flyby of the dark side of the moon. Dark patches of Europa could reveal sodium-rich regions, while brighter areas may be rich in magnesium.
    But seeing ice glow in the lab does not necessarily mean it happens the same way on Europa, Hanley cautions. Jupiter’s icy moon has been barraged by high-energy electrons for a lot longer than 20 seconds. “Is there ever a point where you might break down the salts, and this glow stops happening?” she wonders.
    Other planetary scientists, meanwhile, are not convinced that Europa’s surface is highly salted. These researchers, including Roger Clark of the Planetary Science Institute in Lakewood, Colo., think the apparent hints of salts on Europa are actually created by acids, such as sulfuric acid. Europa’s surface may be coated in both salts and acids, Clark says. “What [the researchers] need to do next is irradiate acids … to see if they can tell the difference between salt with water ice and acids with water ice.” More

  • in

    Jupiter may host atmospheric ‘sprites’ or ‘elves’ never seen beyond Earth

    Jupiter may be the first planet besides Earth known to host atmospheric light shows called “sprites” or “elves.”
    Sprites (SN: 6/14/02) and elves (SN: 12/23/95) are two kinds of atmospheric glows that form when lightning alters the electromagnetic environment in the atmosphere above a storm. On Earth, these electromagnetic upsets cause nitrogen molecules in the upper atmosphere to emit a brief, reddish glow. Sprites can brighten a region of the sky tens of kilometers across, while elves can span hundreds of kilometers (SN: 12/21/96).
    Scientists suspected these atmospheric phenomena might appear on other planets that crackle with lightning (SN: 6/19/18). But until now, no one had seen hints of sprites or elves on another world.
    From 2016 to 2020, the ultraviolet spectrograph on NASA’s Juno spacecraft, in orbit around Jupiter, caught 11 superfast flashes of light across the giant planet. Those flares, reported online October 27 in the Journal of Geophysical Research: Planets, lasted an average 1.4 milliseconds, which is about as fleeting as sprites and elves on Earth. The ultraviolet light was at wavelengths emitted by molecular hydrogen — the type of glow expected of sprites or elves on Jupiter, whose atmosphere is made mostly of hydrogen, rather than nitrogen.
    Juno would need to spot a lightning strike at the same place as one of these bright flares to confirm that they actually are sprites or elves, says study coauthor Rohini Giles, a planetary scientist at the Southwest Research Institute in San Antonio, Texas. “But there is reasonably good circumstantial evidence,” she says. The flashes originated a few hundred kilometers above Jupiter’s layer of water clouds, where lightning typically forms, and several appeared in known stormy regions.
    Observations of these events when Juno is closer to Jupiter may reveal their size, and help determine whether it is sprites or elves (or both) lighting up Jupiter’s atmosphere. More

  • in

    Water exists on sunny parts of the moon, scientists confirm

    Past observations have suggested that there’s water on the moon. New telescope observations conclude that those findings hold water.
    Spacecraft have seen evidence of water ice in permanently shadowed craters at the lunar poles (SN: 5/9/16), as well as hints of water molecules on the sunlit surface (SN: 9/23/09). But water sightings in sunlit regions have relied on detection of infrared light at a wavelength that could also be emitted by other hydroxyl compounds, which contain hydrogen and oxygen. 
    Now, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, has detected an infrared signal unique to water near the lunar south pole, researchers report online October 26 in Nature Astronomy. “This is the first unambiguous detection of molecular water on the sunlit moon,” says study coauthor Casey Honniball, a lunar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This shows that water is not just in the permanently shadowed regions — that there are other places on the moon that we could potentially find it.”
    These observations could inform future missions to the moon that will scout out lunar water as a potential resource for human visitors (SN: 12/16/19).

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    SOFIA, operated by NASA and the German Aerospace Center, is a 2.5-meter telescope that rides aboard a jumbo jet to get clear views of the sky (SN: 2/17/16). During a flight in August 2018, the telescope detected 6-micrometer infrared light emanating from a region near the moon’s southern Clavius crater. This wavelength of light is generated by the vibrations of sunlight-heated water molecules, but not other compounds containing hydroxyl, which consists of an oxygen atom bound to a hydrogen atom.
    “I thought it was really brilliant” to confirm the presence of water on the moon with observations at this wavelength, says Jessica Sunshine, a planetary scientist at the University of Maryland in College Park. Sunshine was involved in past observations that spotted hints of water on the moon, but was not involved in the new study.
    Based on the brightness of the observed infrared light, Honniball’s team calculated a water concentration of about 100 to 400 parts per million around the Clavius crater. That’s less than half a liter of water per metric ton of lunar soil. This concentration was about what the researchers expected, based on past spacecraft observations.
    These water molecules are not frozen in ice, like the water in permanently shadowed regions of the moon. Nor is it liquid, Sunshine says. “There’s no moon puddles.” Instead, the water molecules are thought to be bound inside some other material on the lunar surface.
    “The only way for us to be seeing water on the [sunlit] moon is if it is sheltered from this harsh environment,” Honniball says. These water molecules could be encased in glass forged by micrometeorite impacts, or wedged between soil grains that shield the water from blistering solar radiation.
    Water could have formed on the moon itself, from hydrogen ions in the continual outward flow of charged particles from the sun reacting with oxygen on the surface (SN: 10/6/14). Or, if the water is stored in impact glass, it could have been delivered to the moon by micrometeorites. More