More stories

  • in

    How Mars rovers have evolved in 25 years of exploring the Red Planet

    Few things are harder than hurling a robot into space — and sticking the landing. On the morning of July 4, 1997, mission controllers at the Jet Propulsion Laboratory in Pasadena, Calif., were hoping to beat the odds and land a spacecraft successfully on the Red Planet.

    Twenty-five years ago that little robot, a six-wheeled rover named Sojourner, made it — becoming the first in a string of rovers built and operated by NASA to explore Mars. Four more NASA rovers, each more capable and complex than the last, have surveyed the Red Planet. The one named Curiosity marked its 10th year of cruising around on August 5. Another, named Perseverance, is busy collecting rocks that future robots are supposed to retrieve and bring back to Earth. China recently got into the Mars exploring game, landing its own rover, Zhurong, last year.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Other Mars spacecraft have done amazing science from a standstill, such as the twin Viking landers in the 1970s that were the first to photograph the Martian surface up close and the InSight probe that has been listening for Marsquakes shaking the planet’s innards (SN Online: 2/24/20). But the ability to rove turns a robot into an interplanetary field geologist, able to explore the landscape and piece together clues to its history. Mobility, says Kirsten Siebach, a planetary scientist at Rice University in Houston, “makes it a journey of discovery.”

    Each of the Mars rovers has gone to a different place on the planet, enabling scientists to build a broad understanding of how Mars evolved over time. The rovers revealed that Mars contained water, and other life-friendly conditions, for much of its history. That work set the stage for Perseverance’s ongoing hunt for signs of ancient life on Mars.

    Each rover is also a reflection of the humans who designed and built and drove it. Perseverance carries on one of its wheels a symbol of Mars rover tracks twisted into the double helix shape of DNA. That’s “to remind us, whatever this rover is, it’s of human origin,” says Jennifer Trosper, an engineer at the Jet Propulsion Lab, or JPL, who has worked on all five NASA rovers. “It is us on Mars, and kind of our creation.”

    The little microwave that could

    Sojourner, that first rover, was born in an era when engineers weren’t sure if they even could get a robot to work on Mars. In the early 1990s, then-NASA Administrator Daniel Goldin was pushing the agency to do things “faster, better and cheaper” — a catchphrase that engineers would mock by saying only two of those three things were possible at the same time. NASA had no experience with inter­planetary rovers. Only the Soviet Union had operated rovers — on the moon in 1970 and 1973.

    JPL began developing a Mars rover anyway. Named after the abolitionist Sojourner Truth, the basic machine was the size of a microwave oven. Engineers were limited in where they could send it; they needed a large flat region on Mars because handling a precision landing near mountains or canyons was beyond their abilities. NASA chose Ares Vallis, a broad outflow channel from an ancient flood, and the mission landed there successfully.

    Sojourner spent nearly three months poking around the landscape. It was slow going. Mission controllers had to communicate with Sojourner constantly, telling it where to roll and then assessing whether it had gotten there safely. They made mistakes: One time they uploaded a sequence of computer commands that mistakenly told the rover to shut itself down. They recovered from that stumble and many others, learning to quickly fix problems and move forward.

    In 1997, NASA’s first rover, Sojourner, rolled down a landing ramp and became the first mobile Mars robot. Solar panels provided power throughout its 12-week mission.JPL-CALTECH/NASA

    Although Sojourner was a test mission to show that a rover could work, it managed to do some science with its one X-ray spectrometer. The little machine analyzed the chemical makeup of 15 Martian rocks and tested the friction of the Martian soil.

    After surviving 11 weeks beyond its planned one-week lifetime, Sojourner ultimately grew too cold to operate. Trosper was in mission control when the rover died on September 27, 1997. “You build these things, and even if they’re well beyond their lifetime, you just can’t let go very easily, because they’re part of you,” she says.

    Jennifer Trosper, an engineer at the Jet Propulsion Laboratory, is part of a small group of people who have worked on all five NASA Mars rovers. Here she is in 2021 with a model of Perseverance.CHRISTOPHER MICHEL/WIKIMEDIA COMMONS (CC BY-SA 4.0)

    Twin explorers

    In 1998 and 1999, NASA hurled a pair of spacecraft at Mars; one was supposed to orbit the planet and another was supposed to land near one of the poles. Both failed. Stung from the disappointment, NASA decided to build a rover plus a backup for its next attempt.

    Thus were born the twins Spirit and Opportunity. Each the size of a golf cart, they were a major step up from Sojourner. Each had a robotic arm, a crucial development in rover evolution that enabled the machines to do increasingly sophisticated science. The two had beefed-up cameras, three spectrometers and a tool that could grind into rocks to reveal the texture beneath the surface.

    But there were a lot of bugs to work out. Spirit and Opportunity launched several weeks apart in 2003. Spirit got to Mars first, and on its 18th Martian day on the surface it froze up and started sending error messages. It took mission controllers days to sort out the problem — an overloaded flash-memory system — all while Opportunity was barreling toward Mars. Ultimately, engineers fixed the problem, and Opportunity landed safely on the opposite side of the planet from Spirit.

    Both rovers lasted years beyond their expected three-month lifetimes. And both did far more Martian science than anticipated.

    Spirit broke one of its wheels early on and had to drive backward, dragging the broken wheel behind it. But the rover found plenty to do near its landing site of Gusev crater, home to a classic Mars landscape of dust, rock and hills. Spirit found rocks that appeared to have been altered by water long ago and later spotted a pair of iron-rich meteorites. The rover ultimately perished in 2010, stuck in a sand-filled pit. Mission controllers tried to extract it in an effort dubbed “Free Spirit,” but salts had precipitated around the sand grains, making them particularly slippery.

    Opportunity, in contrast, became the Energizer Bunny of rovers, exploring constantly and refusing to die. Immediately after landing in Meridiani Planum, Opportunity had scientists abuzz.

    The pale rock at center, seen beneath the Opportunity rover’s robotic arm in 2013, was one of many at the rover’s landing site that held long-awaited evidence that liquid water once flowed on Mars.
    JPL-CALTECH/NASA, CORNELL UNIV., ARIZONA STATE UNIV.

    “The images that the rover first sent back were just so different from any other images we’d seen of the Martian surface,” says Abigail Fraeman, a planetary scientist at JPL. “Instead of these really dusty volcanic plains, there was just this dark sand and this really bright bedrock. And that was just so captivating and inspiring.”

    Right at its landing site, Opportunity spotted the first definitive evidence of past liquid water on Mars, a much-anticipated and huge discovery (SN: 3/27/04, p. 195). The rover went on to find evidence of liquid water at different times in the Martian past. After years of driving, the rover reached a crater called Endeavour and “stepped into a totally new world,” Fraeman says. The rocks at Endeavour were hundreds of millions of years older than others studied on Mars. They contained evidence of different types of ancient water chemistry.

    Opportunity ultimately drove farther than any rover on any extraterrestrial world, breaking a Soviet rover’s lunar record. In 2015, Opportunity passed 26.2 miles (42.2 km) on its odometer; mission controllers celebrated by putting a marathon medal onto a mock-up of the rover and driving it through a finish line ribbon at JPL. Opportunity finally died in 2019 after an intense dust storm obscured the sun, cutting off solar power, a must-have for the rover to recharge its batteries (SN: 3/16/19, p. 7).

    The twin rovers were a huge advance over Sojourner. But the next rover was an entirely different beast.

    Mission project scientist Ashwin Vasavada stands with several rovers, which learn to traverse various surfaces in the Mars Yard at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.JPL-Caltech/NASA

    The SUV of rovers

    By the mid-2000s, NASA had decided it needed to go big on Mars, with a megarover the size of a sports utility vehicle. The one-ton Curiosity was so heavy that its engineers had to come up with an entirely new way to land on Mars. The “sky crane” system used retro-rockets to hover above the Martian surface and slowly lower the rover to the ground.

    Against all odds, in August 2012, Curiosity landed safely near Mount Sharp, a 5-kilometer-high pile of sediment within the 154-kilometer-wide Gale crater (SN: 8/25/12, p. 5). Unlike the first three Mars rovers, which were solar-powered, Curiosity runs on energy produced by the radioactive decay of plutonium. That allows the rover to travel farther and faster, and to power a suite of sophisticated science instruments, including two chemical laboratories.

    Curiosity introduced a new way of exploring Mars. When the rover arrives in a new area, it looks around with its cameras, then zaps interesting rocks with its laser to identify which ones are worth a closer look. Once up close, the rover stretches out its robotic arm and does science, including drilling into rocks to see what they are made of.

    When Curiosity arrived near the base of Mount Sharp, it immediately spotted rounded pebbles shaped by a once-flowing river, the first close­up look at an ancient river on Mars. Then mission controllers sent the rover rolling away from the mountain, toward an area in the crater known as Yellowknife Bay. There Curiosity discovered evidence of an ancient lake that created life-friendly conditions for potentially many thousands of years.

    Curiosity then headed back toward the foothills of Mount Sharp. Along the way, the rover discovered a range of organic molecules in many different rocks, hinting at environments that had been habitable for millions to tens of millions of years. It sniffed methane gas sporadically wafting within Gale crater, a still-unexplained mystery that could result from geologic reactions, though methane on Earth can be formed by living organisms (SN: 7/7/18, p. 8). The rover measured radiation levels across the surface — helpful for future astronauts who’ll need to gauge their exposure — and observed dust devils, clouds and eclipses in the Martian atmosphere and night sky.

    Shimmering clouds of ice crystals appear in the sky above Gale crater on Mars, as seen by the Curiosity rover in March 2021. The ability to drive across Mars gives rovers a humanlike ability to interact with the landscape.
    MSSS, JPL-Caltech/NASA

    “We’ve encountered so many unexpectedly rich things,” says Ashwin Vasavada of JPL, the mission’s project scientist. “I’m just glad a place like this existed.”

    Ten years into its mission, Curiosity still trundles on, making new discoveries as it climbs the foothills of Mount Sharp. It recently departed a clay-rich environment and is now entering one that is heavier in sulfates, a transition that may reflect a major shift in the Martian climate billions of years ago.

    In the course of driving more than 28 kilometers, Curiosity has weathered major glitches, including one that shuttered its drilling system for over a year. And its wheels have been banged up more than earthbound tests had predicted. The rover will continue to roll until some unknown failure kills it or its plutonium power wanes, perhaps five years from now.

    Over nearly 10 years of driving on Mars’ rocky surface, Curiosity’s wheels have taken more of a beating than its designers expected.
    MSSS, JPL-Caltech/NASA

    A rover and its sidekick

    NASA’s first four rovers set the stage for the most capable and agile rover ever to visit Mars: Perseverance. Trosper likens the evolution of the machines to the growth of children. “We have a preschooler in Sojourner, and then … your happy-go-lucky teenagers in Spirit and Opportunity,” she says. “Curiosity is certainly a young adult that’s able to do a lot of things on her own, and Perseverance is kind of that high-powered mid­career [person] able to do pretty much anything you ask with really no questions.”

    Perseverance is basically a copy of Curiosity built from its spare parts, but with one major modification: a system for drilling, collecting and storing slender cores of rock. Perseverance’s job is to collect samples of Martian rock for future missions to bring to Earth, in what would be the first robotic sample return from Mars. That would allow scientists to do sophisticated analyses of Martian rocks in their earthbound labs. “It feels, even more than previous missions, that we are doing this for the next generation,” Siebach says.

    The rover is working fast. Compared with Curiosity’s leisurely exploration of Gale crater, Perseverance has been zooming around its landing site, the 45-kilometer-wide Jezero crater, since its February 2021 arrival. It has collected 10 rock cores and is already eyeing where to put them down on the surface for future missions to pick up. “We’re going to bring samples back from a diversity of locations,” says mission project scientist Kenneth Farley of Caltech. “And so we keep to a schedule.”

    Perseverance went to Jezero to study an ancient river delta, which contains layers of sediment that may harbor evidence of ancient Martian life. But the rover slightly missed its target, landing on the other side of a set of impassable sand dunes. So it spent most of its first year exploring the crater floor, which turned out to be made of igneous rocks (SN: 9/11/21, p. 32). The rocks had cooled from molten magma and were not the sedimentary rocks that many had expected.

    Scientists back on Earth will be able to precisely date the age of the igneous rocks, based on the radioactive decay of chemical elements within them, providing the first direct evidence for the age of rocks from a particular place on Mars.

    Perseverance collected its 9th rock core, barely the size of a pinky finger, on July 7. Future missions will return the stored samples to Earth for study.
    JPL-CALTECH/NASA, ARIZONA STATE UNIV.

    Once it finished exploring the crater floor in March, the rover drove quickly toward the delta. Each successive NASA rover has had greater skills in autonomous driving, able to identify hazards, steer around them and keep going without needing constant instructions from mission control.

    Perseverance has a separate computer processor to run calculations for autonomous navigation, allowing it to move faster than Curiosity. (It took Curiosity two and a half years to travel 10 kilometers; Perseverance traveled that far in a little over a year.) “The rover drives pretty much every minute that we can give it,” Farley says.

    In April, Perseverance set a Martian driving record, traveling nearly five kilometers in just 30 Martian days. If all goes well, it will make some trips up and down the delta, then travel to Jezero crater’s rim and out onto the ancient plains beyond.

    Perseverance has a sidekick, Ingenuity, the first helicopter to visit another world. The nimble flier, only half a meter tall, succeeded beyond its designers’ wildest dreams. The helicopter made 29 flights in its first 16 months when it was only supposed to make five in one month. It has scouted paths ahead and scientific targets for the rover (SN Online: 4/19/22). Future rovers are almost certain to carry a little buddy like this.

    An engineer at NASA’s Jet Propulsion Laboratory measures light on the Perseverance rover during a 2019 test. The rover landed on Mars last year and has been exploring it ever since.JPL-CALTECH/NASA

    China’s debut

    While the United States has led in Mars rover exploration, it is not the only player on the scene. In May 2021, China became the second nation to successfully place a rover on Mars. Its Zhurong rover, named after a mythological fire god, has been exploring part of a large basin in the planet’s northern hemisphere known as Utopia Planitia.

    The landing site lies near a geologic boundary that may be an ancient Martian shoreline. Compared with the other Mars rover locations, Zhurong’s landing site is billions of years younger, “so we are investigating a different world on Mars,” says Lu Pan, a planetary scientist at the University of Copenhagen who has collaborated with Zhurong scientists.

    In many ways, Zhurong resembles Spirit and Opportunity, in size as well as mobility. It carries cameras, a laser spectrometer for studying rocks and ground-penetrating radar to probe underground soil structures (SN Online: 5/19/21).

    After landing, Zhurong snapped pictures of its rock-strewn surroundings and headed south to explore a variety of geologic terrains, including mysterious cones that could be mud volcanoes and ridges that look like windblown dunes. The rover’s initial findings include that the Martian soil at Utopia Planitia is similar to some desert sands on Earth and that water had been present there perhaps as recently as 700 million years ago.

    In May, mission controllers switched Zhurong into dormant mode for the Martian winter and hope it wakes up at the end of the season, in December. It has already traveled nearly two kilometers across the surface, farther than the meager 100 meters that Sojourner managed. (To be fair, Sojourner had to keep circling its lander because it relied on that lander to communicate with Earth.)

    The China National Space Administration released this image on June 11, 2021 of Zhurong with its landing platform on Mars.CNSA/Handout via Xinhua

    From Sojourner to Zhurong, the Mars rovers show what humankind can accomplish on another planet. Future rovers might include the European Space Agency’s ExoMars, although its 2022 launch was postponed after Russia attacked Ukraine (SN: 3/26/22, p. 6). Europe terminated all research collaborations with Russia after the invasion, including launching ExoMars on a Russian rocket.

    Vasavada remembers his sense of awe at the Curiosity launch in 2011: “Standing there in Florida, watching this rocket blasting off and feeling it in your chest and knowing that there’s this incredibly fragile complex machine hurtling on the end of this rocket.… It just gave me this full impression that here we are, humans, blasting these things off into space,” he says. “We’re little tiny human beings sending these things to another planet.” More

  • in

    Astronauts might be able to use asteroid soil to grow crops

    Astronauts might one day dine on salad grown in asteroid soil.

    Romaine lettuce, chili pepper and pink radish plants all grew in mixtures of peat moss and faux asteroid soil, researchers report in the July Planetary Science Journal.  

    Scientists have previously grown crops in lunar dirt (SN: 5/23/22). But the new study focuses on “carbonaceous chondrite meteorites, known to be rich in volatile sources — water especially,” says astroecologist Sherry Fieber-Beyer of the University of North Dakota in Grand Forks. These meteorites, and their parent asteroids, are also rich in nitrogen, potassium and phosphorus — key agricultural nutrients. Pulverizing these types of asteroids, perhaps as part of space mining efforts, could potentially provide a ready supply of farming material in space.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Fieber-Beyer purchased a material that mimics the space rocks’ composition and gave it to her graduate student Steven Russell. “I said, ‘All right, grow me some plants.’”

    Russell, now an astrobiologist at the University of Wisconsin–Madison, chose a type of radish, lettuce and chili pepper — all of which have grown aboard the International Space Station. He, Fieber-Beyer and their colleague Kathryn Yurkonis, also of the University of North Dakota, compared how the plants grew in only faux asteroid soil, only peat moss and various mixes of the two.

    Peat moss keeps soil loose and improves water retention. In all mixtures with peat moss, the plants grew. Faux asteroid soil on its own, however, compacted and couldn’t retain water, and so plants couldn’t grow.

    Next, Fieber-Beyer will try growing hairy vetch seeds in that faux asteroid dirt, let the plants decay and then mix the dead plant matter throughout the soil. That, she says, could ensure that the soil doesn’t compact. Plus, seeds weigh a lot less than peat moss, making them easier to carry to space to help with any future farming attempts. More

  • in

    Amateur astronomers’ images of a rare double aurora may unlock its secrets

    What happens when two different kinds of auroras get together? One spills the other’s secrets.

    Amateur astronomers have captured a strange combination of red and green auroras on camera, and physicists — who had never seen such a thing before — have now used these images to learn what may trigger the more mysterious part of the lightshow.

    Photographer Alan Dyer was in his backyard in Strathmore, Canada, when he saw the lights dancing overhead and started filming. “I knew I had something interesting,” says Dyer, who also writes about astronomy. What he didn’t know was that he had just made the most complete recording of this rare phenomenon.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    At a glance, Dyer’s video looks like a celestial watermelon. The rind, a rippling green aurora, is well understood: It appears when the solar wind energizes protons trapped within Earth’s magnetic field, which then rain down and knock electrons and atoms around (SN: 12/10/03).  

    The swath of fruity magenta is more mysterious: Though scientists have known about these “stable auroral red arcs” for decades, there’s no widely accepted proof of how they form. One popular theory is that part of Earth’s magnetic field can heat up the atmosphere and, like proton rain, jostle particles.   

    But until now, researchers had never seen both of these red and green auroras side by side, says Toshi Nishimura, a space physicist at Boston University. “This strange combination,” he says, “was something beyond our expectations.”

    [embedded content]
    Alan Dyer’s footage of this rare double aurora, a time lapse captured over 33 minutes on October 12, 2021, is helping physicists tease out clues to what causes the red glow.

    Along with satellite observations, Dyer’s images and similar ones captured by other amateur astronomers in Canada and Finland show that the two phenomena are related, Nishimura’s team reports in the July JGR Space Physics. Thin rays in the red aurora are the smoking gun as to how. Those lines trace the paths of electrons as they fall along the Earth’s magnetic field. So just as proton rain triggers the green aurora, electron rain appears to trigger the red one, with the solar wind powering both at the same time. Since the electrons carry less energy than the protons, they make for a more reddish color. 

    But electron rain might not be the only way to produce these red glows, cautions Brian Harding, a space physicist at the University of California, Berkeley. Either way, he says, the results are exciting because they show what’s going on is more complicated than researchers thought.

    Those complications are important to understand. The auroras Dyer saw, though beautiful, are danger zones for radio communication and GPS systems (SN: 8/13/17). As Nishimura puts it: If you were driving under a subauroral red arc, your GPS might tell you to veer into a field.

    Until scientists better understand these red glows, they won’t be able to forecast space weather like they do normal weather, Harding explains. “You want to make sure that you can predict stuff like this,” he says.

    The new results would not have been possible without the citizen scientists who took the photos, Nishimura says. “This is a new way of doing research…. When they take more and more cool images, they find more and more things that we don’t know about.”

    According to Dyer, more photos are exactly what’s coming. “We can make a unique contribution to science,” he says.  After all, “you never know what’s going to appear.” More

  • in

    A new look at the ‘mineral kingdom’ may transform how we search for life

    If every mineral tells a story, then geologists now have their equivalent of The Arabian Nights.

    For the first time, scientists have cataloged every different way that every known mineral can form and put all of that information in one place. This collection of mineral origin stories hints that Earth could have harbored life earlier than previously thought, quantifies the importance of water as the most transformative ingredient in geology, and may change how researchers look for signs of life and water on other planets. 

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    “This is just going to be an explosion,” says Robert Hazen, a mineralogist and astrobiologist at the Carnegie Institution for Science in Washington, D.C. “You can ask a thousand questions now that we couldn’t have answered before.”

    For over 100 years, scientists have defined minerals in terms of “what,” focusing on their structure and chemical makeup. But that can make for an incomplete picture. For example, though all diamonds are a kind of crystalline carbon, three different diamonds might tell three different stories, Hazen says. One could have formed 5 billion years ago in a distant star, another may have been born in a meteorite impact, and a third could have been baked deep below the Earth’s crust.

    Diamonds have the same carbon structure, but they can form in different ways. This particular gem originated deep within the Earth.Rob Lavinsky/ARKENSTONE

    So Hazen and his colleagues set out to define a different approach to mineral classification. This new angle focuses on the “how” by thinking about minerals as things that evolve out of the history of life, Earth and the solar system, he and his team report July 1 in a pair of studies in American Mineralogist. The researchers defined 57 main ways that the “mineral kingdom” forms, with options ranging from condensation out of the space between stars to formation in the excrement of bats. 

    The information in the catalog isn’t new, but it was previously scattered throughout thousands of scientific papers. The “audacity” of their work, Hazen says, was to go through and compile it all together for the more than 5,600 known types of minerals. That makes the catalog a one-stop shop for those who want to use minerals to understand the past.

    The compilation also allowed the team to take a step back and think about mineral evolution from a broader perspective. Patterns immediately popped out. One of the new studies shows that over half of all known mineral kinds form in ways that ought to have been possible on the newborn Earth. The implication: Of all the geologic environments that scientists have considered as potential crucibles for the beginning of life on Earth, most could have existed as early as 4.3 billion years ago (SN: 9/24/20). Life, therefore, may have formed almost as soon as Earth did, or at the very least, had more time to arise than scientists have thought. Rocks with traces of life date to only 3.4 billion years ago (SN: 7/26/21). 

    “That would be a very, very profound implication — that the potential for life is baked in at the very beginning of a planet,” says Zachary Adam, a paleobiologist at the University of Wisconsin–Madison who was not involved in the new studies.

    The exact timing of when conditions ripe for life arose is based on “iffy” models, though, says Frances Westall, a geobiologist at the Center for Molecular Biophysics in Orléans, France, who was also not part of Hazen’s team. She thinks that scientists need more data before they can be sure. But, she says, “the principle is fantastic.”

    The new results also show how essential water has been to making most of the minerals on Earth. Roughly 80 percent of known mineral types need H2O to form, the team reports.

    “Water is just incredibly important,” Hazen says, adding that the estimate is conservative. “It may be closer to 90 percent.”

    Some minerals would not form in certain ways without the influence of life. Photosynthesizing bacteria helped bring about the oxygen-rich conditions needed for this azurite (left), while the opalized ammonite (right) was created by the mineral opal filling the space where an ammonite shell used to be.Rob Lavinsky/ARKENSTONE

    Taken one way, this means that if researchers see water on a planet like Mars, they can guess that it has a rich mineral ecosystem (SN: 3/16/21). But flipping this idea may be more useful: Scientists could identify what minerals are on the Red Planet and then use the new catalog to work backward and figure out what its environment was like in the past. A group of minerals, for example, might be explainable only if there had been water, or even life.

    Right now, scientists do this sort of detective work on just a few minerals at a time (SN: 5/11/20). But if researchers want to make the most of the samples collected on other planets, something more comprehensive is needed, Adam says, like the new study’s framework.

    And that’s just the beginning. “The value of this [catalog] is that it’s ongoing and potentially multigenerational,” Adam says. “We can go back to it again and again and again for different kinds of questions.” 

    “I think we have a lot more we can do,” agrees Shaunna Morrison, a mineralogist at the Carnegie Institution and coauthor of the new studies. “We’re just scratching the surface.” More

  • in

    50 years ago, a new theory of Earth’s core began solidifying

    How the Earth got its core – Science News, July 1, 1972

    In the beginning, scientists believe there was an interstellar gas cloud of all the elements comprising the Earth. A billion or so years later, the Earth was a globe of concentric spheres with a solid iron inner core, a liquid iron outer core and a liquid silicate mantle…. The current theory is that the primeval cloud’s materials accreted … and that sometime after accretion, the iron, melted by radioactive heating, sank toward the center of the globe…. Now another concept is gaining ground: that the Earth may have accreted … with core formation and accretion occurring simultaneously.

    Update

    Most scientists now agree that the core formed as materials that make up Earth collided and glommed together and that the process was driven by heat from the smashups. The planet’s heart is primarily made of iron, nickel and some oxygen, but what other elements may dwell there and in what forms remains an open question. Recently, scientists proposed the inner core could be superionic, with liquid hydrogen flowing through an iron and silicon lattice (SN: 3/12/22, p. 12). More

  • in

    Samples of the asteroid Ryugu are scientists’ purest pieces of the solar system

    Samples of the asteroid Ryugu are the most pristine pieces of the solar system that scientists have in their possession.

    A new analysis of Ryugu material confirms the porous rubble-pile asteroid is rich in carbon and finds it is extraordinarily primitive (SN: 3/16/20). It is also a member of a rare class of space rocks known as CI-type, researchers report online June 9 in Science. 

    Their analysis looked at material from the Japanese mission Hayabusa2, which collected 5.4 grams of dust and small rocks from multiple locations on the surface of Ryugu and brought that material to Earth in December 2020 (SN: 7/11/19; SN: 12/7/20). Using 95 milligrams of the asteroid’s debris, the researchers measured dozens of chemical elements in the sample and then compared abundances of several of those elements to those measured in rare meteorites classified as CI-type chondrites. Fewer than 10 meteorites found on Earth are CI chondrites.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    This comparison confirmed Ryugu is a CI-type chondrite. But it also showed that unlike Ryugu, the meteorites appear to have been altered, or contaminated, by Earth’s atmosphere or even human handling over time. “The Ryugu sample is a much more fresh sample,” says Hisayoshi Yurimoto, a geochemist at Hokkaido University in Sapporo, Japan.

    The researchers also measured the abundances of manganese-53 and chromium-53 in the asteroid and determined that melted water ice reacted with most of the minerals around 5 million years after the solar system’s start, altering those minerals, says Yurimoto. That water has since evaporated, but those altered minerals are still present in the samples. By studying them, the researchers can learn more about the asteroid’s history.   More

  • in

    Ice at the moon’s poles might have come from ancient volcanoes

    Four billion years ago, lava spilled onto the moon’s crust, etching the man in the moon we see today. But the volcanoes may have also left a much colder legacy: ice.

    Two billion years of volcanic eruptions on the moon may have led to the creation of many short-lived atmospheres, which contained water vapor, a new study suggests. That vapor could have been transported through the atmosphere before settling as ice at the poles, researchers report in the May Planetary Science Journal.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Since the existence of lunar ice was confirmed in 2009, scientists have debated the possible origins of water on the moon, which include asteroids, comets or electrically charged atoms carried by the solar wind (SN: 11/13/09). Or, possibly, the water originated on the moon itself, as vapor belched by the rash of volcanic eruptions from 4 billion to 2 billion years ago.

    “It’s a really interesting question how those volatiles [such as water] got there,” says Andrew Wilcoski, a planetary scientist at the University of Colorado Boulder. “We still don’t really have a good handle on how much are there and where exactly they are.”

    Wilcoski and his colleagues decided to start by tackling volcanism’s viability as a lunar ice source. During the heyday of lunar volcanism, eruptions happened about once every 22,000 years. Assuming that H2O constituted about a third of volcano-spit gasses — based on samples of ancient lunar magma — the researchers calculate that the eruptions released upward of 20 quadrillion kilograms of water vapor in total, or the volume of approximately 25 Lake Superiors.

    Some of this vapor would have been lost to space, as sunlight broke down water molecules or the solar wind blew the molecules off the moon. But at the frigid poles, some could have stuck to the surface as ice.

    For that to happen, though, the rate at which the water vapor condensed into ice would have needed to surpass the rate at which the vapor escaped the moon. The team used a computer simulation to calculate and compare these rates. The simulation accounted for factors such as surface temperature, gas pressure and the loss of some vapor to mere frost.

    About 40 percent of the total erupted water vapor could have accumulated as ice, with most of that ice at the poles, the team found. Over billions of years, some of that ice would have converted back to vapor and escaped to space. The team’s simulation predicts the amount and distribution of ice that remains. And it’s no small amount: Deposits could reach hundreds of meters at their thickest point, with the south pole being about twice as icy as the north pole.

    The results align with a long-standing assumption that ice dominates at the poles because it gets stuck in cold traps that are so cold that ice will stay frozen for billions of years.

    “There are some places at the lunar poles that are as cold as Pluto,” says planetary scientist Margaret Landis of the University of Colorado Boulder.

    Volcanically sourced water vapor traveling to the poles, though, probably depends on the presence of an atmosphere, say Landis, Wilcoski and their colleague Paul Hayne, also a planetary scientist at the University of Colorado Boulder. An atmospheric transit system would have allowed water molecules to travel around the moon while also making it more difficult for them to flee into space. Each eruption triggered a new atmosphere, the new calculations indicate, which then lingered for about 2,500 years before disappearing until the next eruption some 20,000 years later.

    This part of the story is most captivating to Parvathy Prem, a planetary scientist at Johns Hopkins Applied Physics Laboratory in Laurel, Md., who wasn’t involved in the research. “It’s a really interesting act of imagination.… How do you create atmospheres from scratch? And why do they sometimes go away?” she says. “The polar ices are one way to find out.”

    If lunar ice was belched out of volcanoes as water vapor, the ice may retain a memory of that long-ago time. Sulfur in the polar ice, for example, would indicate that it came from a volcano as opposed to, say, an asteroid. Future moon missions plan to drill for ice cores that could confirm the ice’s origin.

    Looking for sulfur will be important when thinking about lunar resources. These water reserves could someday be harvested by astronauts for water or rocket fuel, the researchers say. But if all the lunar water is contaminated with sulfur, Landis says, “that’s a pretty critical thing to know if you plan on bringing a straw with you to the moon.” More

  • in

    These are the first plants grown in moon dirt

    That’s one small stem for a plant, one giant leap for plant science.

    In a tiny, lab-grown garden, the first seeds ever sown in lunar dirt have sprouted. This small crop, planted in samples returned by Apollo missions, offers hope that astronauts could someday grow their own food on the moon.

    But plants potted in lunar dirt grew more slowly and were scrawnier than others grown in volcanic material from Earth, researchers report May 12 in Communications Biology. That finding suggests that farming on the moon would take a lot more than a green thumb.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    “Ah! It’s so cool!” says University of Wisconsin–Madison astrobotanist Richard Barker of the experiment.

    “Ever since these samples came back, there’s been botanists that wanted to know what would happen if you grew plants in them,” says Barker, who wasn’t involved in the study. “But everyone knows those precious samples … are priceless, and so you can understand why [NASA was] reluctant to release them.”

    Now, NASA’s upcoming plans to send astronauts back to the moon as part of its Artemis program have offered a new incentive to examine that precious dirt and explore how lunar resources could support long-term missions (SN: 7/15/19).

    The dirt, or regolith, that covers the moon is basically a gardener’s worst nightmare. This fine powder of razor-sharp bits is full of metallic iron, rather than the oxidized kind that is palatable to plants (SN: 9/15/20). It’s also full of tiny glass shards forged by space rocks pelting the moon. What it is not full of is nitrogen, phosphorus or much else plants need to grow. So, even though scientists have gotten pretty good at coaxing plants to grow in fake moon dust made of earthly materials, no one knew whether newborn plants could put down their delicate roots in the real stuff.

    To find out, a trio of researchers at the University of Florida in Gainesville ran experiments with thale cress (Arabidopsis thaliana). This well-studied plant is in the same family as mustards and can grow in just a tiny clod of material. That was key because the researchers had only a little bit of the moon to go around.

    The team planted seeds in tiny pots that each held about a gram of dirt. Four pots were filled with samples returned by Apollo 11, another four with Apollo 12 samples and a final four with dirt from Apollo 17. Another 16 pots were filled with earthly volcanic material used in past experiments to mimic moon dirt. All were grown under LED lights in the lab and watered with a broth of nutrients. 

    Thale cress plants grown for 16 days in volcanic material from Earth (left) looked starkly different compared with seedlings nourished in moon dirt (right). Plants potted in samples returned by the Apollo 11 mission (right, top) fared worse than those planted in Apollo 12 samples (right, middle) or Apollo 17 samples (right, bottom).Tyler Jones, IFAS/UF

    “Nothing really compared to when we first saw the seedlings as they were sprouting in the lunar regolith,” says Anna-Lisa Paul, a plant molecular biologist. “That was a moving experience, to be able to say that we’re watching the very first terrestrial organisms to grow in extraterrestrial materials, ever. And it was amazing. Just amazing.”

    Plants grew in all the pots of lunar dirt, but none grew as well as those cultivated in earthly material. “The healthiest ones were just smaller,” Paul says. The sickliest moon-grown plants were tiny and had purplish pigmentation — a red flag for plant stress. Plants grown in Apollo 11 samples, which had been exposed on the lunar surface the longest, were most stunted.

    Paul and colleagues also inspected the genes in their mini alien Eden. “By seeing what kind of genes are turned on and turned off in response to a stress, that shows you what tools plants are pulling out of their metabolic toolbox to deal with that stress,” she says. All plants grown in moon dirt pulled out genetic tools typically seen in plants struggling with stress from salt, metals or reactive oxygen species (SN: 9/8/21).

    Apollo 11 seedlings had the most severely stressed genetic profile, offering more evidence that regolith exposed to the lunar surface longer — and therefore littered with more impact glass and metallic iron — is more toxic to plants.

    Future space explorers could choose the site for their lunar habitat accordingly. Perhaps lunar dirt could also be modified somehow to make it more comfortable for plants. Or plants could be genetically engineered to feel more at home in alien soil. “We can also choose plants that do better,” Paul says. “Maybe spinach plants, which are very salt-tolerant, would have no trouble growing in lunar regolith.”

    Barker isn’t daunted by the challenges promised by this first attempt at lunar gardening.  “There’s many, many steps and pieces of technology to be developed before humanity can really engage in lunar agriculture,” he says. “But having this particular dataset is really important for those of us that believe it’s possible and important.” More