More stories

  • in

    Earth has a second known ‘Trojan asteroid’ that shares its orbit

    A recently found space rock is schlepping along with Earth around the sun. This “Trojan asteroid” is only the second one discovered that belongs to our planet. And it’s probably a visitor.

    Trojan asteroids, which are also found accompanying Mars, Jupiter and Neptune, hang out in two locations near a planet where the gravitational pulls of that planet and the sun balance each other (SN: 10/15/21). Because of this balancing act, these locations are stable spots in space. In 2010, astronomers discovered the first known Earth Trojan — called 2010 TK7 — orbiting within one of these two regions, known as L4, tens of millions of kilometers from Earth and leading our planet around the sun (SN: 8/2/11).

    Now, researchers have found another one. Dubbed 2020 XL5, this roughly 1-kilometer-wide asteroid is also at L4, astronomer Toni Santana-Ros of the University of Barcelona and colleagues report February 1 in Nature Communications.

    The space rock was first spotted in December 2020, and follow-up observations suggested that it might be at L4. To confirm this, Santana-Ros and colleagues observed the asteroid using ground-based telescopes in 2021. Measurements of its brightness let the researchers estimate the asteroid’s size — about three to four times as wide as 2010 TK7. They also scoured archival data and found the object in images dating to 2012.

    “There is no doubt this is an Earth Trojan,” Santana-Ros says. That decade-worth of observations let the team calculate the rock’s orbit thousands of years into the future, confirming the asteroid’s nature. It will hang around at L4 for at least 4,000 years, the team predicts. 2010 TK7, for comparison, will stick around for some 10,000 years.

    Now that scientists know of two just-visiting Earth Trojans, they can envision more. The fact that the team discovered a second object means that 2010 TK7 isn’t a rarity or loner, Santana-Ros says. “It might be part of a family or population.” More

  • in

    Machine learning points to prime places in Antarctica to find meteorites

    The hunt for meteorites may have just gotten some new leads. A powerful new machine learning algorithm has identified over 600 hot spots in Antarctica where scientists are likely to find a bounty of the fallen alien rocks, researchers report January 26 in Science Advances.  

    Antarctica isn’t necessarily the No. 1 landing spot for meteorites, bits of extraterrestrial rock that offer a window into the birth and evolution of the solar system. Previous estimates suggest more meteorites probably land closer to the equator (SN: 5/29/20). But the southern continent is still the best place to find them, says Veronica Tollenaar, a glaciologist at the Université libre de Bruxelles in Belgium. Not only are the dark specks at the surface starkly visible against the white background, but quirks of the ice sheet’s flow can also concentrate meteorites in “stranding zones.”

    The trouble is that so far, meteorite stranding zones have been found by luck. Satellites help, but poring through the images is time-consuming, and field reconnaissance is costly. So Tollenaar and her colleagues trained computers to find these zones more quickly.

    Such stranding zones form when the slow creep of the ice sheet over the land encounters a mountain or hidden rise in the ground. That barrier shifts the flow upward, carrying any embedded space rocks toward the surface.

    Combining a machine learning algorithm with data on the ice’s velocity and thickness, surface temperatures, the shape of the bedrock and known stranding zones, Tollenaar and colleagues created a map of 613 probable meteorite hot spots, including some near existing Antarctic research stations.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    To date, about 45,000 meteorites have been plucked from the ice. But that’s a fraction of the 300,000 bits of space rock estimated to lie somewhere on the continent’s surface.

    The team has yet to test the map on the ground; a COVID-19 outbreak at the Belgian station in December halted plans to try it during the 2021–2022 field season. It will try again next year. Meanwhile, the team is making these data freely accessible to other researchers, hoping they’ll take up the hunt as well. More

  • in

    The James Webb Space Telescope has reached its new home at last

    The James Webb Space Telescope has finally arrived at its new home. After a Christmas launch and a month of unfolding and assembling itself in space, the new space observatory reached its final destination, a spot known as L2, on January 24.

    But the telescope can’t start doing science yet. There are still several months’ worth of tasks on Webb’s to-do list before the telescope is ready to peep at the earliest light in the universe or spy on exoplanets’ alien atmospheres (SN: 10/6/21).

    “That doesn’t mean there’s anything wrong,” says astronomer Scott Friedman of the Space Telescope Science Institute in Baltimore, who is managing this next phase of Webb’s journey. “Everything could go perfectly, and it would still take six months” from launch for the telescope’s science instruments to be ready for action, he says.

    Here’s what to expect next.

    Life at L2

    L2, technically known as the second Earth-sun Lagrange point, is a spot about 1.5 million kilometers from Earth in the direction of Mars, where the sun and Earth’s gravity are of equal strength. Pairs of massive objects in space have five such Lagrange points, where the gravitational pushes and pulls from these celestial bodies essentially cancel each other out. That lets objects at Lagrange points stay put without much effort.

    The telescope, also known as JWST, isn’t just sitting tight, though. It’s orbiting L2, even as L2 orbits the sun. That’s because L2 is not precisely stable, Friedman says. It’s like trying to stay balanced directly on top of a basketball. If you nudged an object sitting exactly at that point, it would be easy to make it wander off. Circling L2 as L2 circles the sun in a “halo orbit” is much more stable — it’s harder to fall off the basketball when in constant motion. But it takes some effort to stay there.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    “JWST and other astronomical satellites, which are said to be at L2 but are really in halo orbits, need propulsion to maintain their positions,” Friedman says. “For JWST, we will execute what we call station keeping maneuvers every 21 days. We fire our thrusters to correct our position, thus maintaining our halo orbit.”

    The amount of fuel needed to maintain Webb’s home in space will set the lifetime of the mission. Once the telescope runs out of fuel, the mission is over. Luckily, the spacecraft had a near-perfect launch and didn’t use much fuel in transit to L2. As a result, it might be able to last more than 10 years, team members say, longer than the original five- to 10-year estimate.

    [embedded content]
    Webb’s final destination is a spot in space called L2, about 1.5 million kilometers away from Earth. The telescope will actually orbit L2 as L2 orbits the sun (as shown in this animation). This special “halo orbit” helps the spacecraft stay in place without burning much fuel.

    Webb has one more feature that helps it stay stable. The telescope’s gigantic kitelike sunshield, which protects the delicate instruments from the heat and light of the sun, Earth and the moon, could pick up momentum from the stream of charged particles that constantly flows from the sun, like a solar sail. If so, that could push Webb off course. To prevent this, the telescope has a flap that acts as a rudder, said Webb sunshield manager Jim Flynn of Northrup Grumman in a January 4 news conference.

    Cooling down

    Webb sees in infrared light, wavelengths longer than what the human eye can see. But humans do experience infrared radiation as heat. “We’re essentially looking at the universe in heat vision,” says astrophysicist Erin Smith of NASA’s Goddard Space Flight Center in Greenbelt, Md., a project scientist on Webb.

    That means that the parts of the telescope that observe the sky have to be at about 40 kelvins (–233° Celsius), which nearly matches the cold of space. That way, Webb avoids emitting more heat than the distant sources in the universe that the telescope will be observing, preventing it from obscuring them from view.

    Most of Webb has been cooling down ever since the telescope’s sunshield unfurled on January 4. The observatory’s five-layer sunshield blocks and deflects heat and light, letting the telescope’s mirrors and scientific instruments cool off from their temperature at launch. The sunshield layer closest to the sun will warm to about 85° Celsius, but the cold side will be about –233° Celsius, said Webb’s commissioning manager Keith Parrish in a January 4 webcast.

    “You could boil water on the front side of us, and on the backside of us, you’re almost down to absolute zero,” Parrish said.

    One of the instruments, MIRI, the Mid-Infrared Instrument, has extra coolant to bring it down to 6.7 kelvins (–266° Celsius) to enable it to see even dimmer and cooler objects than the rest of the telescope. For MIRI, “space isn’t cold enough,” Smith says.

    Aligning the mirrors

    Webb finished unfolding its 6.5-meter-wide golden mirror on January 8, turning the spacecraft into a true telescope. But it’s not done yet. That mirror, which collects and focuses light from the distant universe, is made up of 18 hexagonal segments. And each of those segments has to line up with a precision of about 10 or 20 nanometers so that the whole apparatus mimics a single, wide mirror.

    Starting on January 12, 126 tiny motors on the back of the 18 segments started moving and reshaping them to make sure they all match up. Another six motors went to work on the secondary mirror, which is supported on a boom in front of the primary mirror.

    [embedded content]
    Before the James Webb Space Telescope can start observing the universe, all 18 segments of its primary mirror need to act as one 6.5-meter mirror. This animation shows the mirror segments moving, tilting and bending to bring 18 separate images of a star (light dots) together into a single, focused image.

    This alignment process will take until at least April to finish. In part, that’s because the movements are happening while the mirror is cooling. The changing temperature changes the shape of the mirrors, so they can’t be put in their final alignment until after the telescope’s suite of scientific instruments are fully chilled.

    Once the initial alignment is done, light from distant space will first bounce off the primary mirror, then the secondary mirror and finally reach the instruments that will analyze the cosmic signals. But the alignment of the mirror segments is “not just right now, it’s a continuous process, just to make sure that they’re always perfectly aligned,” Scarlin Hernandez, a flight systems engineer at the Space Telescope Science Institute in Baltimore said at a NASA Science Live event on January 24. The process will continue for the telescope’s lifetime.

    Calibrating the science instruments

    While the mirrors are aligning, Webb’s science instruments will turn on. Technically, this is when Webb will take its first pictures, says astronomer Klaus Pontoppidan, also of the Space Telescope Science Institute. “But they’re not going to be pretty,” Pontoppidan says. The telescope will first test its focus on a single bright star, bringing 18 separate bright dots into one by tilting the mirrors.

    After a few final adjustments, the telescope will be “performing as we want it to and presenting beautiful images of the sky to all the instruments,” Friedman says. “Then they can start doing their work.”

    These instruments include NIRCam, the primary near-infrared camera that will cover the range of wavelengths from 0.6 to 5 micrometers. NIRCam will be able to image the earliest stars and galaxies as they were when they formed at least 12 billion years ago, as well as young stars in the Milky Way. The camera will also be able to see objects in the Kuiper Belt at the edge of the solar system and is equipped with a coronagraph, which can block light from a star to reveal details of dimmer exoplanets orbiting it.

    Next up is NIRSpec, the near-infrared spectrograph, which will cover the same range of light wavelengths as NIRCam. But instead of collecting light and turning it into an image, NIRSpec will split the light into a spectrum to figure out an object’s properties, such as temperature, mass and composition. The spectrograph is designed to observe 100 objects at the same time.

    MIRI, the mid-infrared instrument, is kept the coldest to observe in the longest wavelengths, from 5 to 28 micrometers. MIRI has both a camera and a spectrograph that, like NIRCam and NIRSpec, will still be sensitive to distant galaxies and newborn stars, but it will also be able to spot planets, comets and asteroids.

    And the fourth instrument, called the FGS/NIRISS, is a two-parter. FGS is a camera that will help the telescope point precisely. And NIRISS, which stands for near-infrared imager and slitless spectrograph, will be specifically used to detect and characterize exoplanets.

    [embedded content]
    The James Webb Space Telescope’s science instruments are stored behind the primary mirror (as shown in this animation). Light from distant objects hits the primary mirror, then the secondary mirror in front of it, which focuses the light onto the instruments.

    First science targets

    It will take at least another five months after arriving at L2 to finish calibrating all of those science instruments, Pontoppidan says. When that’s all done, the Webb science team has a top secret plan for the first full color images to be released.

    “These are images that are meant to demonstrate to the world that the observatory is working and ready for science,” Pontoppidan says. “Exactly what will be in that package, that’s a secret.”

    Partly the secrecy is because there’s still some uncertainty in what the telescope will be able to look at when the time comes. If setting up the instruments takes longer than expected, Webb will be in a different part of its orbit and certain parts of the sky will be out of view for a while. The team doesn’t want to promise something specific and then be wrong, Pontoppidan says.

    But also, “it’s meant to be a surprise,” he says. “We don’t want to spoil that surprise.”

    Webb’s first science projects, however, are not under wraps. In the first five months of observations, Webb will begin a series of Early Release Science projects. These will use every feature of every instrument to look at a broad range of space targets, including everything from Jupiter to distant galaxies and from star formation to black holes and exoplanets.

    Still, even the scientists are eager for the pretty pictures.

    “I’m just very excited to get to see those first images, just because they will be spectacular,” Smith says. “As much as I love the science, it’s also fun to ooh and ahh.”    More

  • in

    An X-ray glow suggests black holes or neutron stars fuel weird cosmic ‘cows’

    A brilliant blast from a galaxy 2 billion light-years away is the brightest cosmic “Cow” found yet. It’s the fifth known object in this new class of exploding stars and their long-glowing remnants, and it’s giving astronomers even more hints of what powers these mysterious blasts.

    These Cow-like events, named for the first such object discovered in 2018 — which had the unique identifier name of AT2018cow — are a subclass of supernova explosions, making up only 0.1 percent of such cosmic blasts (SN: 6/21/19). They brighten quickly, glow brilliantly in ultraviolet and blue light and continue to show up for months in higher-energy X-rays and lower-energy radio waves.

    X-rays from the newest discovery, dubbed AT2020mrf, glowed 20 times as bright as the original Cow a month after the blast, Caltech astronomer Yuhan Yao reported January 10 at a virtual news conference held by the American Astronomical Society. And even one year after this new object’s discovery, its X-rays were 200 times as bright as those from the original Cow. Yao and colleagues also reported the results in a paper submitted December 1 at arXiv.org.

    Unraveling all that took a bit of time. The Zwicky Transient Facility at Caltech’s Palomar Observatory near San Diego, Calif., initially noted a bright new burst of light June 12, 2020, but astronomers didn’t realize what it was at the time.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Then in April 2021, researchers with the Spektrum-Roentgen-Gamma (SRG) space telescope, which studies X-ray light, alerted Yao and her colleagues to an interesting signal in SRG data from July 21–24, 2020, at the same spot in the sky. “I almost immediately realized that this might be another Cow-like event,” says Yao. The astronomers sprang to action and looked at that location with multiple other observatories in different kinds of light.

    One of those observatories was the space-based Chandra X-ray Observatory, the world’s most powerful X-ray telescope. In June 2021, a year after the original supernova blast, it captured X-rays from the same location. The source’s signal “was 10 times brighter than what I expected,” says Yao, and 200 times as bright as the original Cow was a year post-explosion.

    Even more exciting was that the strengths of both the Chandra X-ray detection and the original SRG X-ray observations also changed within hours to days. That flaring characteristic, it turns out, can tell astronomers a lot.

    “X-rays give us information of what’s happening at the heart of these events,” says MIT astrophysicist DJ Pasham, who has studied the original Cow but was not part of this new study. “The duration of the flare gives you a sense of how compact or how big the object is.”  

    A compact object like an actively eating black hole or a rapidly spinning and highly magnetic neutron star would create the strong and variable X-ray signals that were seen, Yao says. These were the two most probable leftover remnants of the original cosmic Cow as well, but the AT2020mrf observations provide even greater certainty (SN: 12/13/21).

    Further observations and catching these objects earlier in the act with multiple types of light will help researchers learn more about this new class of supernovas and what type of star eventually explodes as a Cow. More

  • in

    An early outburst portends a star’s imminent death

    A star’s death usually comes without warning. But an early sign of one star’s imminent demise hints at what happens before some stellar explosions.

    In a last hurrah before exploding, a star brightened, suggesting that it blasted some of its outer layers into space. It’s the first time scientists have spotted a pre-explosion outburst from a run-of-the-mill type of exploding star, or supernova, researchers report in the Jan. 1 Astrophysical Journal.

    Scientists have previously seen harbingers of unusual types of supernovas. But “what’s nice about this one is it’s a much more normal, vanilla … supernova that’s showing this eruption before explosion,” says astronomer Mansi Kasliwal of Caltech, who was not involved with the research.

    On September 16, 2020, scientists discovered the explosion of a star roughly 10 times as massive as the sun, located about 120 million light-years away. Thankfully, telescopes that regularly survey a swath of the sky, as part of an effort called the Young Supernova Experiment, had been observing the star well before it detonated. About 130 days before the explosion, the star brightened, the researchers found, the start of a pre-explosion eruption.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    The final explosion was a commonplace type of stellar detonation called a type 2 supernova, which occurs when the core of an aging star collapses. Precursors to such explosions probably hadn’t been seen before because the early eruptions are faint. For this supernova, scientists had observations of the star sensitive enough to pick up the relatively weak eruption.

    Previous post-explosion observations of such supernovas have hinted that the stars slough off layers before death. In 2021, astronomers reported signs of a supernova’s shock wave plowing into material that the star had expelled (SN: 11/2/21). A similar sign of cast-off stellar material was also found in the new study.

    Scientists aren’t sure exactly what causes such early outbursts. They could be the result of events happening deep within a star, for example, as the star burns different types of fuel as it nears death. If more such events are found, scientists may eventually be able to predict which stars will go boom, and when.

    Precursor outbursts are a sign that stars experience inner turmoil before exploding, says study coauthor Raffaella Margutti, an astrophysicist at the University of California, Berkeley. “The main message that we are getting from the universe is that these stars are really knowing that the end is coming.” More

  • in

    Organic molecules in an ancient Mars meteorite formed via geology, not alien life

    When researchers in 1996 reported they had found organic molecules nestled in an ancient Martian meteorite discovered in Antarctica, it caused quite a buzz. Some insisted the compounds were big-if-true evidence of life having existed on Mars (SN: 3/8/01). Others, though, pointed to contamination by earthly life-forms or some nonbiological origins (SN: 1/10/18).

    Now, a geochemical analysis of the meteorite provides the latest buzzkill to the idea that alien life inhabited the 4.09-billion-year-old fragment of the Red Planet. It suggests instead that the organic matter within probably formed from the chemical interplay of water and minerals mingling under Mars’ surface, researchers report in the Jan. 14 Science. Even so, the finding could aid in the search for life, the team says.

    Organic molecules are often produced by living organisms, but they can also arise from nonbiological, abiotic processes. Though myriad hypotheses claim to explain what sparked life, many researchers consider abiotic organic molecules to be necessary starting material. Martian geologic processes could have been generating these compounds for billions of years, the new study suggests.

    “These organic chemicals could have become the primordial soup that might have helped form life on [Mars],” says Andrew Steele, a biochemist from the Carnegie Institution for Science in Washington, D.C. Whether life ever existed there, however, remains unknown.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    Steele and his colleagues initially sought to study how ancient Martian water may have morphed minerals in the meteorite, known as ALH84001. The team used microscopic and spectroscopic imaging methods to analyze tiny slivers from parts of the meteorite that appeared to have reacted with water.

    In their samples, the researchers discovered by-products of two chemical reactions — serpentinization and carbonation — which occur when underground fluids interact with minerals and transform them. Amid these by-products, the researchers detected complex organic molecules. Based on the identification of these two processes, the team concluded the organics probably formed during the reactions, just as they do on Earth.

    Analysis of the relative amounts of different types of hydrogen in the organic matter supported the notion that the organic compounds developed while on Mars; they didn’t emerge later on from Earth’s microbes or materials used in the team’s experiments.

    Altogether the findings suggest that at least two geologic processes probably produced organic matter on the Red Planet, says Mukul Sharma, a geochemist at Dartmouth College who was not involved in the study.

    The study is not the only to propose that organic material in Martian rocks could form without life. Researchers attributed the formation of complex organics in the 600-million-year-old Tissint meteorite, also from Mars, to chemical interactions of water and rock (SN: 10/11/12).

    However, ALH84001 is one of the oldest Martian meteorites ever found. The new findings, when considered alongside other discoveries of Martian organic matter, suggest that abiotic processes may have been generating organic material across the Red Planet for much of its history, Sharma says. “Nature has had a huge amount of time on its hands to produce this stuff.”

    Though the work doesn’t bring us any closer to proving or disproving the existence of life on Mars, identifying abiotic sources of organic compounds there is crucial for the search, Steele explains. Once you’ve figured out how Martian organic chemistry acts without meddlesome life, he says, “you can then look to see if it’s been tweaked.” More

  • in

    Astronomers identified a second possible exomoon

    Some of the same researchers who found the first purported exomoon now say that they’ve found another.

    Dubbed Kepler 1708 b i, the satellite has a radius about 2.6 times that of Earth, and circles a Jupiter-sized exoplanet that orbits its parent star about once every two Earth years, the team reports January 13 in Nature Astronomy. That sunlike star lies about 5,700 light-years from Earth.

    To find this nugget, the team sorted through a database of more than 4,000 exoplanets detected by NASA’s now-retired Kepler space telescope. Because large planets orbiting far from their parent star are more likely to have moons large enough to be detected, the team focused on a subset of 70 exoplanets.

    Each of these planets is between half and twice the size of Jupiter. They all either take more than 400 Earth days to orbit their star or have an estimated average surface temperature less than 300 kelvins (around 27° Celsius), slightly higher than that of Earth.

    After further screening, including tossing out exoplanets that don’t have near-circular orbits (which are statistically less likely to host moons), the team identified a strong candidate for an exomoon. It, like its host planet, caused detectable dimming of the parent star’s light when moving across the face of the star.

    Discovery of the first possible exomoon, dubbed Kepler 1625 b, has faced a lot of skepticism (SN: 4/30/19). Both proposed exomoons need to be confirmed by further observations by other instruments, such as the recently launched James Webb Space Telescope, the team notes (SN: 10/6/21).

    But fresh observations will need to wait: The newfound exomoon candidate and its planet won’t pass in front of the parent star again until March 24, 2023, the researchers calculate. More

  • in

    Oxygen-rich exoplanets may be geologically active

    Humble oxygen is more than just a building block of life. The element could also help scientists sneak a peek into the innards of planets orbiting faraway stars, a new study suggests.

    Laboratory experiments show that rocks exposed to higher concentrations of oxygen melt at lower temperatures than rocks exposed to lower amounts. The finding suggests that oxygen-rich rocky exoplanets could have a thick layer of soupy mantle, possibly giving rise to a geologically active world, researchers report in the Nov. 9 Proceedings of the National Academy of Sciences.

    A gooey interior is thought to have profound effects on a rocky planet. Molten rock deep within a planet is the magma that powers geologic activity on the surface, like what happens on Earth (SN: 7/31/13). During volcanic eruptions, volatiles such as water vapor and carbon dioxide can fizzle out of the magmatic ooze, setting up atmospheres that are potentially friendly to life (SN: 9/3/19). But the factors that drive mantle melting on Earth aren’t well-understood, and scientists have tended to focus on the role of metals, such as iron.

    The impact of oxygen on rock melting has been overlooked, says Yanhao Lin, a planetary scientist at the Center for High Pressure Science and Technology Advanced Research in Beijing. Oxygen is one of the most abundant elements on Earth and probably on rocky exoplanets too, he says. As such, other scientists may have previously thought that it is just too common of an element to play such a literally earthshaking role, adds Lin.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    In the new study, Lin and colleagues measured the melting temperatures of synthetic, iron-free basalt rock under rock in two environments: under oxygen-starved conditions and exposed to oxygen-rich air. The team used the faux rock to isolate oxygen’s effect on melting and rule out the effects of iron, which can also influence rock melting.

    As the molten rocks cooled to less than 1000° Celsius, the minerals in the oxygenated basalt stayed melted longer than the oxygen-depleted samples, the team observed. The oxygenated rocks consistently solidified at temperatures 100° Celsius lower than their counterparts.

    Just as salt lowers the melting temperature of ice, oxygen similarly makes it easier for rocks to melt, the researchers conclude. Lin hypothesizes that oxygen can break up long chains of silicon and oxygen atoms in solid rock, coaxing them to form smaller bits. These fragments are more mobile and can flow more easily compared to the longer, tangly groups.

    The degree of oxidation could determine how a young exoplanet’s syrupy insides eventually settle into subterranean layers. A more oxidized and more melt-prone gut at lower temperatures may lead to a smaller solid core, a thicker sludgy mantle and a more metal-deprived crusty shell, the researchers say.

    A caveat to the work is that the researchers tested the impact of only oxygen on the melting temperature of rocks. The team has yet to consider other factors such as iron concentration and high pressure, which are also probably part of many real-world exoplanet interiors. These additional factors will further induce melting, Lin predicts.

    The findings are “a very good effort,” says planetary scientist Tim Lichtenberg of the University of Oxford who was not involved in the study. Other caveats to mantle melting may surpass oxygen’s contribution, but the new results are still useful, he says. Understanding oxygen’s potential impact, for example, could be valuable for explaining the inner workings and history of any exoplanet that scientists come across in their astronomical observations. That understanding could be even more valuable — and opportune — as scientists prepare to use the newly launched James Webb Space Telescope to probe the atmospheres of other worlds (SN: 10/6/21).

    Lab experiments, of course, can’t capture all the nuances of real-life planetary interiors. But the work is necessary to guide — and confirm — the formulation of theories about how certain types of exoplanets came to be, Lichtenberg says. Simulations can then extend the reach of experimental results when combined with other techniques, such as modeling.

    “Observations, the modeling and the experiments,” Lichtenberg says, “there’s a trifecta.” These three prongs feed off each other to advance exoplanet science as a whole, long before humankind ever sets foot on such distant worlds. More