More stories

  • in

    New ideas on what makes a planet habitable could reshape the search for life

    When considering where to look for extraterrestrial life, astronomers have mostly stuck with what’s familiar. The best candidates for habitable planets are considered the ones most like Earth: small, rocky, with breathable atmospheres and a clement amount of warmth from their stars.

    But as more planets outside the solar system have been discovered, astronomers have debated the usefulness of this definition (SN: 10/4/19). Some planets in the so-called habitable zone, where temperatures are right for liquid water, are probably not good for life at all. Others outside that designated area might be perfectly comfortable.

    Now, two studies propose revising the concept of “habitable zone” to account for more of the planets that astronomers may encounter in the cosmos. One new definition brings more planets into the habitable fold; the other nudges some out.

    “Both papers focus on questioning the classical idea of the habitable zone,” says astronomer Noah Tuchow of Penn State University. “We should extend the range of places that we look, so we don’t miss habitable planets.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    Some overlooked planets could be much bigger than Earth, and potentially receive no starlight at all. Astrophysicist Nikku Madhusudhan of the University of Cambridge and colleagues propose a new category of possibly habitable planet that could be found at almost any distance from any kind of star.

    These hypothetical planets have a global liquid-water ocean nestled under a thick hydrogen-rich atmosphere (SN: 5/4/20). Madhusudhan calls them “Hycean” planets, for “hydrogen” and “ocean.” They could be up to 2.6 times the size of Earth and up to 10 times as massive, Madhusudhan and colleagues report August 25 in the Astrophysical Journal. That thick atmosphere could keep temperatures right for liquid water even with minimal input from a star, while the ocean could protect anything living from crushing atmospheric pressure.

    “We want to expand beyond our fixated paradigm so far on Earthlike planets,” Madhusudhan says. “Everything we’ve learned about exoplanets so far is extremely diverse. Why restrict ourselves when it comes to life?”

    In the search for alien life, Hycean planets would have several advantages over rocky planets in the habitable zone, the team says. Though it’s difficult to tell which worlds definitely have oceans and hydrogen atmospheres, there are many more known exoplanets in the mass and temperature ranges of Hycean planets than there are Earthlike planets. So the odds are good, Madhusudhan says.

    And because they are generally larger and have more extended atmospheres than rocky planets, Hycean planets are easier to probe for biosignatures, molecular signs of life. Detectable biosignatures on Hycean planets could include rare molecules associated with life on Earth like dimethyl sulfide and carbonyl sulfide. These tend to be too low in concentration to detect in thin Earthlike atmospheres, but thicker Hycean atmospheres would show them more readily.

    Best of all, existing or planned telescopes could detect those molecules within a few years, if they’re there. Madhusudhan already has plans to use NASA’s James Webb Space Telescope, due to launch later this year, to observe the water-rich planet K2 18b (SN: 9/11/19).

    That planet’s habitability was debated when it was reported in 2019. Madhusudhan says 20 hours of observations with JWST should solve the debate.

    “Best-case scenario, we’ll detect life on K2 18b,” he says, though “I’m not holding my breath over it.”

    Astronomer Laura Kreidberg of the Max Planck Institute for Astronomy in Heidelberg, Germany, thinks it probably won’t be that easy. Planets in the Hycean size range tend to have cloudy or hazy atmospheres, making biosignatures more difficult to pick up.

    It’s also not clear if Hycean planets actually exist in nature. “It is a really fun idea,” she says. “But is it just a fun idea, or does it match up with reality? I think we absolutely don’t know yet.”

    Rather than inventing a new way to bring exoplanets into the habitable family, Tuchow and fellow Penn State astronomer Jason Wright are kicking some apparently habitable planets out. The pair realized that the region of clement temperatures around a star changes as the star evolves and changes brightness.

    Some planets are born in the habitable zone and stay there their entire lives. But some, possibly most, are born outside their star’s habitable zone and enter it later, as the star ages. In the August Research Notes of the American Astronomical Society, Tuchow and Wright suggest calling those worlds “belatedly habitable planets.”

    When astronomers point their telescopes at a given star, the scientists are seeing only a snapshot of the star’s habitable zone, the pair say. “If you just look at a planet in the habitable zone in the present day, you have no idea how long it’s been there,” Tuchow says. It’s an open question whether planets that enter the habitable zone later in life can ever become habitable, he explains. If the planet started out too close to the star, it could have lost all its water to a greenhouse effect, like Venus did. Moving Venus to the position of Earth won’t give it its water back.

    On the other end, a planet that was born farther from its star could be entirely covered in glaciers, which reflect sunlight. They may never melt, even when their stars brighten. Worse, their water could go straight from frozen to evaporated, a process known as sublimation. That scenario would leave the planet no time with even a cozy wet puddle for life to get started in.

    These planets are “still in the habitable zone,” Tuchow says. “But it adds questions about whether or not being in the habitable zone actually means habitable.” More

  • in

    50 years ago, astronomers were chipping away at Pluto’s mass

    The shrinking mass of Pluto — Science News, August 28, 1971

    Pluto was the last of the planets to be discovered (in 1930). If astronomers continue to make it lighter, it may be the first to disappear.… [The latest measurement] brings Pluto down to 0.11 of Earth’s mass, less than an eighth of its former self.… The wide discrepancies among the figures presented for the mass of Pluto illustrate the particular difficulties of measuring its mass.… If a planet has satellites, its mass can be determined from studying their motions.… But Pluto has no known satellites.

    Update

    The discovery of Pluto’s moon Charon in 1978 (SN: 7/15/78, p. 36) finally allowed astronomers to accurately calculate the planet’s mass: about 0.2 percent of Earth’s mass. Decades after scientists resolved Pluto’s heft, the planet received arguably the greatest demotion of all — a downgrade to dwarf planet (SN: 9/2/06, p. 149). Some astronomers have since proposed alternate definitions for the term “planet” that, if widely adopted, would restore Pluto to its former rank. More

  • in

    ‘Flashes of Creation’ recounts the Big Bang theory’s origin story

    Flashes of CreationPaul HalpernBasic Books, $30

    The Big Bang wasn’t always a sure bet. For several decades in the 20th century, researchers wrestled with interpreting cosmic origins, or if there even was a beginning at all. At the forefront of that debate stood physicists George Gamow and Fred Hoyle: One advocated for an expanding universe that sprouted from a hot, dense state; the other for a cosmos that is eternal and unchanging. Both pioneered contemporary cosmology, laid the groundwork for our understanding of where atoms come from and brought science to the masses.

    In Flashes of Creation, physicist Paul Halpern recounts Gamow’s and Hoyle’s interwoven stories. The book bills itself as a “joint biography,” but that is a disservice. While Gamow and Hoyle are the central characters, the book is a meticulously researched history of the Big Bang as an idea: from theoretical predictions in the 1920s, to the discovery of its microwave afterglow in 1964, and beyond to the realization in the late 1990s that the expansion of the universe is accelerating.

    Although the development of cosmology was the work of far more than just two scientists, Halpern would be hard-pressed to pick two better mascots. George Gamow was an aficionado of puns and pranks and had a keen sense of how to explain science with charm and whimsy (SN: 8/28/18). The fiercely stubborn Fred Hoyle had a darker, more cynical wit, with an artistic side that showed through in science fiction novels and even the libretto of an opera. Both wrote popular science books — Gamow’s Mr Tompkins series, which explores modern physics through the titular character’s dreams, are a milestone of the genre — and took to the airwaves to broadcast the latest scientific thinking into people’s homes.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    “Gamow and Hoyle were adventurous loners who cared far more about cosmic mysteries than social conventions,” Halpern writes. “Each, in his own way, was a polymath, a rebel, and a master of science communication.”

    While the Big Bang is now entrenched in the modern zeitgeist, it wasn’t always so. The idea can be traced to Georges Lemaître, a physicist and priest who proposed in 1927 that the universe is expanding. A few years later, he suggested that perhaps the cosmos began with all of its matter in a single point — the “primeval atom,” he called it. In the 1940s, Gamow latched on to the idea as way to explain how all the atomic elements came to be, forged in the “fireball” that would have filled the cosmos in its earliest moments. Hoyle balked at the notion of a moment of creation, convinced that the universe has always existed — and always will exist — in pretty much the same state we find it today. He even coined the term “Big Bang” as a put-down during a 1949 BBC radio broadcast. The elements, Hoyle argued, were forged in stars.

    As far as the elements go, both were right. “One wrote the beginning of the story of element creation,” Halpern writes, “and the other wrote the ending.” We now know that hydrogen and helium nuclei emerged in overwhelming abundance during the first few minutes following the Big Bang. Stars took care of the rest.

    Halpern treats Gamow and Hoyle with reverence and compassion. Re-created scenes provide insight into how both approached science and life. We learn how Gamow, ever the scientist, roped in physicist Niels Bohr to test ideas about why movie heroes always drew their gun faster than villains — a test that involved staging a mock attack with toy pistols. We sit in with Hoyle and colleagues while they discuss a horror film, Dead of Night, whose circular timeline inspired their ideas about an eternal universe.

    In the mid-20th century, two astronomers emerged as spokesmen for dueling ideas about the origin of the cosmos. George Gamow (left) was a passionate defender of the Big Bang theory, arguing that the universe evolved from a hot, dense state. Fred Hoyle (right) upheld the rival “steady state model,” insisting that the universe is eternal and unchanging.From left: AIP Emilio Segrè Visual Archives, George Gamow Collection; AIP Emilio Segrè Visual Archives, Clayton Collection

    And Halpern doesn’t shy away from darker moments, inviting readers to know these scientists as flawed human beings. Gamow’s devil-may-care attitude wore on his colleagues, and his excessive drinking took its toll. Hoyle, in his waning decades, embraced outlandish ideas, suggesting that epidemics come from space and that a dinosaur fossil had been tampered with to show an evolutionary link to birds. And he went to his grave in 2001 still railing against the Big Bang.

    Capturing the history of the Big Bang theory is no easy task, but Halpern pulls it off. The biggest mark against the book, in fact, may be its scope. To pull in all the other characters and side plots that drove 20th century cosmology, Gamow and Hoyle sometimes get forgotten about for long stretches. A bit more editing could have sharpened the book’s focus.

    But to anyone interested in how the idea of the Big Bang grew — or how any scientific paradigm changes — Flashes of Creation is a treat and a worthy tribute to two scientific mavericks.

    Buy Flashes of Creation from Bookshop.org. Science News is a Bookshop.org affiliate and will earn a commission on purchases made from links in this article. More

  • in

    The definition of planet is still a sore point – especially among Pluto fans

    For 76 years, Pluto was the beloved ninth planet. No one cared that it was the runt of the solar system, with a moon, Charon, half its size. No one minded that it had a tilted, eccentric orbit. Pluto was a weirdo, but it was our weirdo.

    “Children identify with its smallness,” wrote science writer Dava Sobel in her 2005 book The Planets. “Adults relate to its inadequacy, its marginal existence as a misfit.”

    When Pluto was excluded from the planetary display in 2000 at the American Museum of Natural History in New York City, children sent hate mail to Neil deGrasse Tyson, director of the museum’s planetarium. Likewise, there was a popular uproar when 15 years ago, in August 2006, the International Astronomical Union, or IAU, wrote a new definition of “planet” that left Pluto out. The new definition required that a body 1) orbit the sun, 2) have enough mass to be spherical (or close) and 3) have cleared the neighborhood around its orbit of other bodies. Objects that meet the first two criteria but not the third, like Pluto, were designated “dwarf planets.”

    Science is not sentimental. It doesn’t care what you’re fond of, or what mnemonic you learned in elementary school. Science appeared to have won the day. Scientists learned more about the solar system and revised their views accordingly.

    “I believe that the decision taken was the correct one,” says astronomer Catherine Cesarsky of CEA Saclay in France, who was president of the IAU in 2006. “Pluto is very different from the eight solar system planets, and it would have been very difficult to keep changing the number of solar system planets as more massive [objects beyond Neptune] were being discovered. The intention was not at all to demote Pluto, but on the contrary to promote it as [a] prototype of a new class of solar system objects, of great importance and interest.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    For a long time, I shared this view. I’ve been writing about Pluto since my very first newspaper gig at the Cornell Daily Sun, when I was a junior in college in 2006. I interviewed some of my professors about the IAU’s decision. One, planetary scientist Jean-Luc Margot, who is now at UCLA, called it “a triumph of science over emotion. Science is all about recognizing that earlier ideas may have been wrong,” he said at the time. “Pluto is finally where it belongs.”

    But another, planetary scientist Jim Bell, now at Arizona State University in Tempe, thought the decision was a travesty. He still does. The idea that planets have to clear their orbits is particularly irksome, he says. The ability to collect or cast out all that debris doesn’t just depend on the body itself.

    Everything with interesting geology should be a planet, Bell told me recently. “I’m a lumper, not a splitter,” he says. “It doesn’t matter where you are, it matters what you are.”

    Not everyone agrees with him. “Fifteen years ago we finally got it right,” says planetary scientist Mike Brown of Caltech, who uses the Twitter handle @plutokiller because his research helped knock Pluto out of the planetary pantheon. “Pluto had been wrong all along.”

    But since 2006, we’ve learned that Pluto has an atmosphere and maybe even clouds. It has mountains made of water ice, fields of frozen nitrogen, methane snow–capped peaks, and dunes and volcanoes. “It’s a dynamic, complex world unlike any other orbiting the sun,” journalist Christopher Crockett wrote in Science News in 2015 when NASA’s New Horizons spacecraft flew by Pluto.

    Observations from NASA’s New Horizons mission showed that the surface of Pluto’s Sputnik Planitia region is covered in churning nitrogen ice “cells” (white polygonal blocks) that constantly bring fresh material up to the surface from below.JHU-APL, NASA, SWRI

    Closer views highlight the rugged water-ice mountains that border some of these cells.JHU-APL, NASA, SWRI

    The New Horizons mission showed that Pluto has fascinating and active geology to rival that of any rocky world in the inner solar system. And that solidified planetary scientist Philip Metzger’s view that the IAU definition missed the mark.

    “There was an immediate reaction against the dumb definition” when it was proposed, says Metzger, of the University of Central Florida in Orlando. Since then, he and colleagues have been refining their views: “Why do we have this intuition that says that it’s dumb?”

    Retelling the tale

    It turns out that the “we just learned more” narrative isn’t really true, Metzger says. Though the official story is that Pluto was reclassified because new data came in, it’s not that simple. Teaching that narrative is bad for science, and for science education, he says.

    The truth is, there’s no single definition of a planet — and I’m beginning to believe that’s a good thing.

    For centuries, the word “planet” was a much more inclusive term. When Galileo turned his telescope at Jupiter, any largish moving body in the sky was considered a planet — including moons. When astronomers discovered the rocky bodies we now call asteroids in the 1800s, those too were called planets, at least at first.

    Pluto was considered a planet from the very beginning. When Clyde Tombaugh, an amateur astronomer from Kansas newly recruited to the Lowell Observatory in Flagstaff, Ariz., spotted it in photos taken in January 1930, he rushed to the observatory director and declared: “I have found your Planet X.”

    Clyde Tombaugh, shown here with a homemade telescope, discovered Pluto in 1930 when he was 24 years old.GL Archive/Alamy Stock Photo

    The discovery was no accident. In 1903, U.S. astronomer Percival Lowell hypothesized that a hidden planet seven times the mass of Earth orbited 45 times farther from the sun. Lowell had searched for what he called Planet X until he died in 1916. The search continued without him.

    The new planet was thought to be “black as coal, nearly as dense as iron, twice as dense as the heaviest earthly surface rocks,” Science News Letter, the predecessor of Science News, reported in 1930.

    Further research showed Lowell had grossly overestimated Pluto’s mass: It’s more like one five-hundredth the mass of Earth. Things got even weirder when scientists realized Pluto wasn’t alone out there. In 1992, an object about a tenth the diameter of Pluto was found orbiting the sun “in the deep freeze of space well beyond the orbits of Pluto and Neptune,” as Science News described it.

    Since then, more than 2,000 icy bodies have been found hiding in that frigid zone dubbed the Kuiper Belt, and there are many more out there. Awareness of Pluto’s neighbors brought new questions: What characteristics could unite these strange new worlds with the more familiar ones? And what sets them apart? With so many new objects coming into focus, there was a growing desire for a formal definition of “planet.”

    In 2005, Brown spotted the first of the Kuiper Belt bodies that seemed to be larger than Pluto. If Pluto was the ninth planet, then surely the new discovery, nicknamed Xena (in honor of the TV show Xena: Warrior Princess), should be the 10th. But if Xena was an icy leftover from the formation of the solar system undeserving of the “planet” title, so too was Pluto.

    Tensions over how to categorize Pluto and Xena came to a head in 2006 at a meeting in Prague of the IAU. On the final day, August 24, after much acrimonious debate, a new definition of “planet” was put to a vote. Pluto and Xena got the boot. Xena was aptly renamed Eris, the Greek goddess of discord.

    On August 24, 2006, in Prague, members of the International Astronomical Union voted for a new definition of planet that redesignated Pluto and its neighbor Eris as dwarf planets, shrinking the total number of planets in the solar system to eight.Michal Cizek/AFP/Getty Images

    Textbooks were revised, posters were reprinted, but many planetary scientists, especially those who study Pluto, never bothered to change. “Planetary scientists don’t use the IAU’s definition in publishing papers,” Metzger says. “We pretty much just ignore it.”

    In part that might be cheek, or spite. But Metzger and colleagues think there’s good reason to reject the definition. Metzger, Bell and others — including Alan Stern of the Southwest Research Institute, the planetary scientist who led the New Horizons mission and has argued since before the discovery of the Kuiper Belt that the solar system contains hundreds of “planets” — make their case in a pair of recent papers, one published in 2019 in Icarus and one forthcoming.

    After examining hundreds of scientific papers, textbooks and letters dating back centuries, the researchers show that the way scientists and the public have used the word “planet” has changed over time, but not in the way most people think.

    In and out

    Consider Ceres, the first of what are now known as dwarf planets to be discovered. Located in the asteroid belt between Mars and Jupiter, Ceres was considered a planet after its 1801 discovery, too. It’s often said that Ceres was demoted after astronomers found the rest of the bodies in the asteroid belt. By the end of the 1800s, with hundreds of asteroids piling up, Ceres was stripped of its planetary title thanks to its neighbors. In that sense, the story goes, Ceres and Pluto suffered the same fate.

    But that’s not the real story, Metzger and colleagues found. Ceres and other asteroids were considered planets, sometimes dubbed “minor planets,” well into the 20th century. A 1951 article in Science News Letter declared that “thousands of planets are known to circle our sun,” although most are “small fry.” These “baby planets” can be as small as a city block or as wide as Pennsylvania.

    The dwarf planet Ceres orbits in the asteroid belt. It was also once considered a planet. NASA’s Dawn mission visited the dwarf planet in 2015 and found that it is also a geologically interesting world.JPL-Caltech, NASA, UCLA, MPS, DLR, IDA

    It wasn’t until the 1960s, when spacecraft offered better observations of these bodies, that the term “minor planets” fell out of fashion. While the largest asteroids still looked planetlike, most small asteroids turned out to be lumpy and irregular in shape, suggesting a different origin or different geophysics than bigger, rounder planets. The fact that asteroids didn’t “clear their orbits” had nothing to do with the name change, Metzger argues.

    And what about moons? Scientists called them “planets” or “secondary planets” until the 1920s. Surprisingly, it was nonscientific publications, notably astrological almanacs that used the positions of celestial bodies for horoscope readings, that insisted on the simplicity of a limited number of planets moving through the fixed sphere of stars.

    Metzger thinks that older definition of a planet that included moons was forgotten when planetary science went through a “Great Depression” between about 1910 and 1950. So many asteroids had been discovered that searching for new ones or refining their orbits was getting boring. Telescopes weren’t good enough to start exploring asteroids’ geology yet. Other parts of space science were way more exciting, so attention went there.

    But new data that came with space travel brought moons back into the planetary fold. Starting in the 1960s, “planet” reappeared in the scientific literature as a description for satellites, at least the large, round ones.

    Real-world usage

    The planet definition that includes certain moons, asteroids and Kuiper Belt objects has had staying power because it’s useful, Metzger says. Planetary scientists’ work includes comparing a place like Mars (a planet) to Titan (a moon) to Triton (a moon that was probably born in the Kuiper Belt and captured by Neptune long ago) to Pluto (a dwarf planet). It’s scientifically useful to have a word to describe the cosmic bodies where interesting geophysics, including the conditions that enable life, occur, he says. There’s all sorts of extra complexity, from mountains to atmospheres to oceans and rivers, when rocky worlds grow big enough for their own gravity to make them spherical.

    Pluto and hundreds or thousands of other objects that rival Pluto in size and interest orbit in the icy back of the solar system’s fridge, called the Kuiper Belt (white fuzzy ring).NASA

    “We’re not claiming that we have the perfect definition of a planet and that all scientists ought to adopt our definition,” he adds. That’s the same mistake the IAU made. “We’re saying this is something that ought to be debated.”

    A more inclusive definition of “planet” would also give a more accurate concept of what the solar system is. Emphasizing the eight major planets suggests that they dominate the solar system, when in fact the smaller stuff outnumbers those worlds tremendously. The major planets don’t even stay put in their orbits over long time-scales. The gas giants have shuffled around in the past. Teaching the view of the solar system that includes just eight static planets doesn’t do that dynamism justice.

    Caltech’s Brown disagrees. Having the gravitational oomph to nudge other bodies in and out of line is an important feature of a world, he says. Plus, the eight planets clearly dominate our solar system, he says. “If you dropped me in the solar system for the first time, and I looked around and saw what was there, nobody would say anything other than, ‘Wow, there are these eight — choose your word — and a lot of other little things.’ ”

    Pluto rises above the horizon of its largest moon, Charon, in this illustration.Mark Garlick/Science Photo Library/GettyImages Plus

    Thinking of planets that way leads to big-picture questions about how the solar system put itself together.

    One common argument in favor of the IAU’s definition is that it keeps the number of planets manageable. Can you imagine if there were hundreds or thousands of planets? How would the average person keep track of them all? What would we print on lunch boxes? I’m not making fun of this idea; as an astronomy writer who has been obsessed with space since I was 8, I would be reluctant to turn people off to the planets.

    But Metzger thinks teaching just eight planets risks turning people off to all the rest of space. “Back in the early 2000s, there was a lot of excitement when astronomers were discovering new planets in our solar system,” he says. “All that excitement ended in 2006.” But those objects are still out there and are still worthy of interest. By now, there are at least 150 of these dwarf planets, and most people have no clue, he says.

    This is the argument I find most compelling. Why do we need to limit the number of planets? Kids can memorize the names and characteristics of hundreds of dinosaurs, or Pokémon, for that matter. Why not encourage that for planets? Why not inspire students to rediscover and explore the space objects that most appeal to them?

    I’ve come to think that what makes a planet may just be in the eye of the beholders. I may be a lumper, not a splitter, too.

    [embedded content]
    Pluto continues to charm us all, as shown in these 2015 interviews after New Horizons sent its images of the geologic richness of the dwarf planet. More

  • in

    Here’s how cool a star can be and still achieve lasting success

    If you want to be a successful star by making the minimum possible effort, aim for a surface temperature about a quarter of the sun’s. This is the temperature that a new study says separates red dwarf stars, which shine for a long time, from failed stars known as brown dwarfs.

    It’s often hard to distinguish between red and brown dwarfs, because when young they both look the same: red and dim. But only red dwarfs are born with enough mass to sustain the same nuclear reactions that power stars like the sun. In contrast, brown dwarfs glow red primarily from the heat of their birth, but then their nuclear activity sputters out, causing them to cool and fade. Now astrophysicists Dino Hsu and Adam Burgasser at the University of California, San Diego and their colleagues have discerned the dividing line between the two types by exploiting how they move through space.

    When a star is born, it revolves around the Milky Way’s center on a fairly circular orbit. Over time, though, gravitational tugs from giant gas clouds, spiral arms and other stars toss the stars to and fro. These perturbations make the stars’ orbits around the galactic center more and more elliptical. Thus, the orbital paths of stars can reveal their approximate age.

    Most red dwarfs are fairly old; their predicted lifetimes are far longer than the current age of the universe. But because brown dwarfs cool and fade, any that are still warm are young. Thus, on average, red dwarfs should follow more elliptical orbits around the galaxy than young brown dwarfs do.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    In the new study, Hsu’s team analyzed 172 red and brown dwarfs of different spectral types, classifications based on the objects’ spectra that correlate with their surface temperatures. The researchers found that a sharp break in stellar motions separates warmer objects, which on average have more elliptical orbits and are older, from cooler ones, which on average have more circular orbits and are younger. This break appears at a spectral type between L4 and L6, corresponding to a surface temperature of about 1200° to 1400° Celsius (1,500 to 1,700 kelvins) — a fraction of the sun’s surface temperature of about 5500°C (5,800 K) — the team reports July 5 at arXiv.org.

    Above this critical temperature, the dim suns are a mix of long-lived red dwarfs and young brown dwarfs. Below this temperature, though, “it’s all brown dwarfs,” Hsu says. These are the failed stars that are fated to fizzle out. The study will appear in a future issue of the Astrophysical Journal Supplement Series.

    This new method for detecting the temperature boundary between red and brown dwarfs is intriguing, but the result is tentative, says Trent Dupuy, an astronomer at the University of Edinburgh who was not involved in the work. “It’s right around where you would expect,” he says. Dupuy says additional red and brown dwarfs should be observed to verify the finding.

    Hsu agrees: “We need a more complete sample.” Expanding the sample will be both easy and hard. On the positive side, red dwarfs abound, outnumbering all other stellar types put together, and brown dwarfs are also common. On the negative side, though, red and brown dwarfs are faint. That makes measuring their Doppler shifts, which reveal how fast the objects move toward or away from Earth, a challenge. But knowing this motion is essential for calculating a star’s orbital path around the galaxy. More

  • in

    See some of the most intriguing photos from NASA’s Perseverance rover so far

    In February, NASA’s Perseverance rover touched down on Mars and went to work. The rover has seen the first flight of a Martian robot, gotten its drill bit dirty and begun traversing the floor of Jezero crater, thought to be the remains of an ancient lake (SN: 4/30/21).

    And what Perseverance is finding isn’t exactly what scientists expected. “The crater floor is super interesting,” says planetary scientist Briony Horgan of Purdue University in West Lafayette, Ind., one of the mission’s long-term science planners. “We didn’t really know what we were getting into from orbit.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    Perseverance is getting views of enormous boulders that may have been transported by ancient floods, fine rock layers that look like they settled in calm waters, and rocks with large crystals that look volcanic. The rover’s landing site may include a volcanic lava flow from long ago, or signs of an earlier episode of water — or something else.

    “It’s not as obvious as we thought,” Horgan says. “Whatever it is, it’s cool.”

    Here are some of the image highlights from the rover so far.

    Taking the long view

    Before the rover landed, the Perseverance team knew that Jezero crater looked like the dry basin of an ancient lake, with a river delta flowing into it. The prospect of finding preserved lake floor sediments made the site good for searching for past life, one of the mission’s primary goals.

    This picture, taken March 17, is a mosaic of five images taken with Perseverance’s Remote Microscopic Imager camera. The tilted layers of sedimentary rock (arrows) and other textures in this escarpment were probably formed by interaction between an ancient river and a lake.JPL-Caltech/NASA, LANL, CNES, CNRS, ASU, MSSS

    Perseverance took this snapshot March 17 of a steep slope in a part of Jezero’s delta, from more than two kilometers away. The rover probably won’t reach that spot until sometime next year. But already, the rover’s Remote Microscopic Imager camera is uncovering details that could reveal new insight into the crater’s watery past.

    For example, the tilted layers of sedimentary rock and cementlike mixtures of coarse sand and pebbles in this rock feature, nicknamed “Delta Scarp,” confirm the delta’s wet history. There are also individual large boulders cemented into the front of the scarp, suggesting that the region saw high floods, says Perseverance deputy project scientist Katie Stack Morgan of NASA’s Jet Propulsion Lab in Pasadena, Calif.

    Closer to home

    Even eroded outcrops close to Perseverance’s landing site look like they had a watery history. This image of a remnant of part of the delta rising out of the crater floor was taken with Perseverance’s Mastcam-Z camera February 22.

    Perseverance’s Mastcam-Z camera took this image (shown in false color) February 22 of a relatively nearby escarpment, which probably preserves ancient lake sediments. Click to enlargeJim Bell/ASU, Mastcam-Z

    “Many of us expected these outcrops to be quite uninteresting, based on orbital data,” Stack Morgan says. But images from the ground showed beautiful layers, just like what you would find in a deep-lake deposit.

    “We weren’t expecting to find them here, but maybe they’re right next door to our landing site,” she says. These outcrops could be remnants of the edge of the lake that used to fill Jezero crater or could represent an even older lake that was replaced.

    Even closer

    Perseverance is taking close-ups of the rocks around it too. This closeup image of a rock nicknamed “Foux” was taken July 11 using the WATSON camera on the end of the rover’s robotic arm. The area in the image is only about 4 centimeters by 3 centimeters.

    This close-up image of a larger rock was taken with Perseverance’s WATSON camera, part of the SHERLOC instrument on the rover’s robotic arm. It shows textured rocks with an interesting coating that might indicate interaction with water. JPL-Caltech/NASA, MSSS

    The textures in this image are fascinating, as are the “crazy red coatings” that are more purple than typical Mars dust, Horgan says. “What rocks are these?” The coatings probably imply alteration by water, and the purple color suggests that they contain some iron, she adds.

    Volcanic grains?

    Perseverance has also found evidence of igneous, or volcanic, rocks on Jezero’s crater floor. That wasn’t surprising — observations from orbit suggested that volcanic rocks should be there, and scientists hoped to pick up some to help researchers back on Earth figure out the rocks’ absolute ages. Right now, the timing of past events on Mars is based on the sizes of craters and the ages of rocks from the moon, and it’s not extremely precise.

    This image, taken August 2, shows mysterious holes and light and dark patches that are potential crystals. The Perseverance rover abraded the rock to prepare for drilling into it. JPL-Caltech/NASA

    Igneous rocks on Mars tend to be old and preserve a record of their ages well. “If you want to figure out when things happened on Mars, you want an igneous rock,” Stack Morgan says.

    On the ground, though, things are a little more complicated. This rock was the first that Perseverance cleared dust from in preparation for taking a sample. The image shows mysterious holes, which could have been formed by erosion or by air bubbles trapped in lava as it cooled. And the surface is divided into light and dark patches that could be individual crystals, or cemented grains.

    If they’re crystals, that suggests volcanic activity, Stack Morgan says — but these crystals are bigger than expected for lava that would have cooled at the planet’s surface. Similar crystals form deep in the subsurface of Earth, where magma solidifies slowly. When lava cools at Earth’s surface, the crystals “don’t have time to grow big,” Stack Morgan says. The next step, she says, is “thinking through how rocks like this could have formed here, if they are indeed igneous or volcanic rocks. How would we get a rock that looks like this?” Maybe this rock formed underground and was transported to the surface, but it’s not clear how.

    First sample attempt

    That same rock carried more surprises when the rover team tried to drill into it August 6. The drill worked perfectly, to the team’s elation. “One of the most complex robotic systems ever designed and executed worked perfectly with no faults the first time,” Stack Morgan says. “We were like ‘Oh my god, this is amazing.’”

    But when they looked inside the tube that was meant to capture the rock sample, it was empty.

    “It’s been a bit of an emotional roller coaster,” Stack Morgan says.

    Perseverance’s shadow (left) looms over the borehole that the rover made on its first attempt to drill into the Red Planet. The rover’s WATSON imager took a close-up of that hole (composite image at right). These images were taken August 6.JPL-Caltech/NASA, MSSS

    The team thinks that the rock was more crumbly than expected, and essentially turned to dust. “The rock was not able to keep its act together,” Stack Morgan says. The drill is designed to sweep the small grains produced in the drilling process, called cuttings, up and out of the sample tube. Stack Morgan thinks the entire sample was treated as cuttings and ended up in a pile of dust on the ground.

    There is a silver lining: Now the rover has a sealed sample of Martian atmosphere. And the rover will attempt to take another sample of a hardier rock sometime soon, Stack Morgan says.

    In the wind

    Mars may have had lakes and rivers in its past, but today the dry, dusty landscape is shaped mostly by wind (SN: 7/14/20). Perseverance has seen a number of dust devils and windstorms sweep through Jezero crater as a beautiful reminder of how environments are always changing, even on a dried-up planet like Mars.

    A dust devil swirls across the Martian landscape. This image was captured with the Perseverance rover’s left Mastcam-Z camera June 15.JPL-Caltech/NASA, ASU

    “We often think of Mars as this barren wasteland where not much happens today,” Stack Morgan says. “But when you see these dust devils move across the images, you’re kind of reminded that Mars, even though not Earthlike, is its own very active planet still.” More

  • in

    Vera Rubin’s work on dark matter led to a paradigm shift in cosmology

    Bright Galaxies, Dark Matter, and BeyondAshley Jean YeagerMIT Press, $24.95

    Vera Rubin’s research forced cosmologists to radically reimagine the cosmos.

    In the 1960s and ’70s, Rubin’s observations of stars whirling around within galaxies revealed the gravitational tug of invisible “dark matter.” Although astronomers had detected hints of this enigmatic substance for decades, Rubin’s data helped finally convince a skeptical scientific community that dark matter exists (SN: 1/10/20).

    “Her work was pivotal to redefining the composition of our cosmos,” Ashley Yeager, Science News’ associate news editor, writes in her new book. Bright Galaxies, Dark Matter, and Beyond follows Rubin’s journey from stargazing child to preeminent astronomer and fierce advocate for women in science.

    That journey, Yeager shows, was rife with obstacles. When Rubin was a young astronomer in the 1950s and ’60s, many observatories were closed to women, and more established scientists often brushed her off. Much of her early work was met with intense skepticism, but that only made Rubin, who died in 2016 at age 88, a more dogged data collector.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    On graphs plotting the speeds of stars swirling around galaxies, Rubin showed that stars farther from galactic centers orbited just as fast as inner stars. That is, the galaxies’ rotation curves were flat. Such speedy outer stars must be pulled along by the gravitational grip of dark matter.

    Science News staff writer Maria Temming spoke with Yeager about Rubin’s legacy and what, beyond her pioneering research, made Rubin remarkable. The following discussion has been edited for clarity and brevity.

    Temming: What inspired you to tell Rubin’s story?

    Yeager: It all started when I was working at the National Air and Space Museum in Washington, D.C., in 2007. I was walking around the “Explore the Universe” exhibit and noticed there weren’t many women featured. But then there was this picture of a woman with big glasses and cropped hair, and I thought, “Who is this?” It was Vera Rubin.

    My supervisor was a curator of oral histories. He was working on Rubin’s, so I asked him about her. He said, “I have one more oral history interview to do with her. Would you like to come?” So I got to interview her. She was charismatic, kind and curious — not a person who was all about herself, but wanted to know about you. That stuck with me.

    Temming: You spend much of the book describing evidence for dark matter besides Rubin’s research. Why?

    Yeager: I wanted to make sure I didn’t portray Rubin as this lone person who discovered dark matter, because there were a lot of different moving pieces in astronomy and physics that came together in the ’70s and early ’80s for the scientific community to say, “OK, we really have to take dark matter seriously.”

    Temming: What made Rubin’s work a linchpin for confirming dark matter?

    Yeager: She really went after nailing down that flat rotation curve in all types of galaxies. Mainly because she did get a lot of pushback, continually, that said, “Oh, that’s just a special case in that galaxy, or that’s just for those types of galaxies.” She studied hundreds of galaxies to double-check that, yes, in fact, the rotation curves are flat. People saying, “We don’t believe you,” didn’t ever really knock her down. She just came back swinging harder.

    It helped that she did the work in visible wavelengths of light. There had been a lot of radio astronomy data to suggest flat rotation curves, but because radio astronomy was very new, it was really only once you saw it with the eye that the astronomy community was convinced.

    Temming: Do you have a favorite anecdote about Rubin?

    Yeager: The one that comes to mind is how much she loved flowers. She told me about how on drives from Lowell Observatory to Kitt Peak National Observatory in Arizona, she and her colleague Kent Ford would always stop and buy wildflowers. The fact that picking these wildflowers stuck with her, I thought, was just representative of who she was. Her favorite moments weren’t necessarily these big discoveries she’d made, but stopping to pick some flowers and enjoy their beauty.

    Author Ashley Yeager (left) interviewed Vera Rubin (right) in 2007 as part of an oral history project with Smithsonian’s National Air and Space Museum.Smithsonian National Air and Space Museum (NASM 9A16674)

    Temming: Did you learn anything in your research that surprised you?

    Yeager: I didn’t initially grasp how many different types of projects she had. She did a lot with looking for larger-scale structure [in the universe] and looking at the Hubble constant [which describes how fast the universe is expanding] (SN: 4/21/21). She had a very diverse set of questions that she wanted to answer, well into her 70s.

    Temming: I was surprised by her decision to get out of the rat-race of hunting for quasars, when that area of research heated up in the 1960s.

    Yeager: She very much didn’t like to be in pressure situations where she could be wrong. She liked to go and collect so much data that no one could [dispute it]. With quasar research, it was just too fast, and she wanted to be methodical about it.

    Temming: Why is Rubin’s story important to tell now?

    Yeager: Unfortunately for women and minorities in science, it’s still very relevant, in that there are a lot of challenges to pursuing a career in STEM. Her story demonstrates that you have to surround yourself with people who are willing to help you and get away from the people who want to keep you down. Plus her story is also very encouraging: Your curiosity can keep you going and can fuel something way bigger than yourself.

    Temming: How did she advocate for women in astronomy?

    Yeager: She was very outspoken about it. At National Academy of Sciences meetings, the organizers always dreaded her standing up, because she would say, “What are we doing about women in science? We’re not doing enough.” She was constantly pushing for women to be recognized with awards. She kept tabs on the number of women who had earned Ph.D.s and who had gotten staff positions — and their salaries. She was very data-driven. She’d cull that information and use it to advocate for better representation and recognition of women in astronomy.

    Temming: How would you describe Rubin to someone who hasn’t met her?

    Yeager: She was one of the most persistent, gracious and nurturing people that I’ve ever met. You could strip away all that she did in astronomy and she would still be this incredible figure — the way she carried herself, the way she treated people. Just a beautiful human being.

    Buy Bright Galaxies, Dark Matter, and Beyond from Bookshop.org. Science News is a Bookshop.org affiliate and will earn a commission on purchases made from links in this article. More

  • in

    Jupiter’s intense auroras superheat its upper atmosphere

    Jupiter’s upper atmosphere is hundreds of degrees warmer than expected. After a decades-long search, scientists may have pinned down a likely source of that anomalous heat. The culprit, a new study suggests, is the planet’s intense auroras, Jupiter’s version of Earth’s northern and southern lights (SN: 6/8/21).

    The temperature of the upper atmosphere of Jupiter, which orbits an average distance of 778 million kilometers from the sun, should be about –73° Celsius, says James O’Donoghue, a planetary scientist at the JAXA Institute of Space and Astronautical Science in Sagamihara, Japan. That’s largely due to the feeble illumination of the sun there, which amounts to less than 4 percent of the energy per square meter that hits Earth’s atmosphere. Instead, the region several hundred kilometers above the planet’s cloud tops has an average temperature of about 426° C.

    Scientists first noticed this mismatch more than 40 years ago. Since then, researchers have come up with several ideas about where the upper atmosphere’s thermal boost might originate, including pressure waves or gravity waves created by turbulence lower in the atmosphere. But observations by O’Donoghue and his colleagues now provide convincing evidence that the auroras pump heat throughout the planet’s upper atmosphere.

    The researchers used the 10-meter Keck II telescope atop Hawaii’s dormant Mauna Kea volcano to observe Jupiter on one night each in 2016 and 2017. Specifically, the team looked for infrared emissions that betray the presence of positively charged hydrogen molecules (H3+). Those molecules are created when charged particles in the solar wind, among other sources, slam into the planet’s atmosphere at hundreds or thousands of kilometers per second, painting polar auroras.

    Measuring the intensities of these molecules’ infrared emissions let the team pin down how hot it gets high above the cloud tops. In those polar regions, temperatures in the upper atmosphere likely top out at about 725° C, the team reports in the Aug. 5 Nature. But at equatorial latitudes, the team’s heat map showed that the temperature falls to about 325° C. That pattern of a gradual drop-off in temperature toward lower latitudes bolsters the notion that Jupiter’s auroras are the source of anomalous heat in the upper atmosphere and that winds disperse that warmth from the polar regions.

    One of the nights the team observed Jupiter — January 25, 2017 — was particularly well-timed because Jupiter was experiencing a strong solar flare at the time. Besides an intense aurora, data revealed a broad swath of warmer-than-normal gases at mid-latitudes, which the researchers interpret as a wave of warmth rolling southward. “It was pure luck that we captured this potential heat-shedding event,” says O’Donoghue.

    The team’s observations “are close to a ‘smoking gun’ for the redistribution of auroral energy,” says Tommi Koskinen, a planetary scientist at the University of Arizona in Tucson. The next challenge, he notes, is to understand the underlying mechanisms of heat production and heat transfer and to then incorporate them into researchers’ simulations of Jupiter’s atmospheric circulation. More