More stories

  • in

    Here’s why humans chose particular groups of stars as constellations

    The Big Dipper’s stars make up a conspicuous landmark in the sky of the Northern Hemisphere. Even novice stargazers can easily pick out the shape, part of the Ursa Major constellation. Now, scientists have shown that three factors can explain why certain groups of stars form such recognizable patterns.

    To replicate how humans perceive the celestial sphere, a team of researchers considered how the eye might travel randomly across this night sky. Human eyes tend to move in discrete jumps, called saccades (SN: 10/31/11), from one point of interest to another. The team created a simulation that incorporated the distribution of lengths of those saccades, combined that with basic details of the night sky as seen from Earth — namely the apparent distances between neighboring stars and their brightnesses.

    The technique could reproduce individual constellations, such as Dorado, the dolphinfish. And when used to map the whole sky, the simulation generated groupings of stars that tended to align with the 88 modern constellations recognized by the International Astronomical Union, Sophia David and colleagues reported March 18 at an online meeting of the American Physical Society.

    “Ancient people from various cultures connected similar groupings of stars independently of each other,” said David, a high school student at Friends’ Central School in Wynnewood, Penn., who worked with network scientists at the University of Pennsylvania. “And this indicates that there are some fundamental aspects of human learning … that influence the ways in which we organize information.” More

  • in

    The ‘USS Jellyfish’ emits strange radio waves from a distant galaxy cluster

    Something’s fishy in the southern constellation Phoenix.

    Strange radio emissions from a distant galaxy cluster take the shape of a gigantic jellyfish, complete with head and tentacles. Moreover, the cosmic jellyfish emits only the lowest radio frequencies and can’t be detected at higher frequencies. The unusual shape and radio spectrum tell a tale of intergalactic gas washing over galaxies and gently revving up electrons spewed out by gargantuan black holes long ago, researchers report in the March 10 Astrophysical Journal.

    Spanning 1.2 million light-years, the strange entity lies in Abell 2877, a cluster of galaxies 340 million light-years from Earth. Researchers have dubbed the object the USS Jellyfish, because of its ultra-steep spectrum, or USS, from low to high radio frequencies.

    “This is a source which is invisible to most of the radio telescopes that we have been using for the last 40 years,” says Melanie Johnston-Hollitt, an astrophysicist at Curtin University in Perth, Australia. “It holds the record for dropping off the fastest” with increasing radio frequency.

    Johnston-Hollitt’s colleague Torrance Hodgson, a graduate student at Curtin, discovered the USS Jellyfish while analyzing data from the Murchison Widefield Array, a complex of radio telescopes in Australia that detect low-frequency radio waves. These radio waves are more than a meter long and correspond to photons, particles of light, with the lowest energies. Remarkably, the USS Jellyfish is about 30 times brighter at 87.5 megahertz — a frequency similar to that of an FM radio station — than at 185.5 MHz.

    The Murchison Widefield Array consists of 4,096 radio antennas grouped into 256 “tiles” (one pictured) spanning several kilometers in a remote region of Western Australia.Pete Wheeler, ICRAR

    “That is quite spectacular,” says Reinout van Weeren, an astronomer at Leiden University in the Netherlands who was not involved with the work. “It is quite a neat result, because this is really extreme.”

    The USS Jellyfish bears no relation to previously discovered jellyfish galaxies. “This is absolutely enormous compared to those other things,” Johnston-Hollitt says. Indeed, jellyfish galaxies are a very different kettle of celestial fish. Although they also inhabit galaxy clusters, they are individual galaxies passing through hot gas in a cluster. The hot gas tears the galaxy’s own gas out of it, creating a wake of tentacles. The much larger USS Jellyfish, on the other hand, appears to have formed when intergalactic gas and electrons interacted.

    Hodgson and his colleagues note that two galaxies in the Abell 2877 cluster coincide with the brightest patches of radio waves in the USS Jellyfish’s head. These galaxies, the researchers say, probably have supermassive black holes at their centers. The team ran computer simulations and found that the black holes were probably accreting material some 2 billion years ago. As they did so, disks of hot gas formed around each of them, spewing huge jets of material into the surrounding galaxy cluster.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    This ejected material had electrons that whirled around magnetic fields at nearly the speed of light, so the electrons emitted radio waves. Over time, though, the electrons lost energy, and the most energetic electrons, which had been emitting the highest radio frequencies, faded the most. Then a wave of gas sloshed through the entire cluster, reaccelerating the electrons around the two galaxies.

    “It’s a very gentle process,” Johnston-Hollitt says. “The electrons don’t get that much energy, which means they don’t light up at high frequencies.” Instead, the gentle gas wave caused electrons to emit radio waves with the lowest energies and frequencies, giving the USS Jellyfish the extreme spectrum it has today. More

  • in

    50 years ago, experiments hinted at the possibility of life on Mars

    Organics on Mars — Science News, March 27, 1971

    [Researchers] have exposed a mixture of gases simulating conditions believed to exist on the surface of Mars to ultraviolet radiation. The reaction produced organic compounds. They conclude that the ultraviolet radiation bombarding the surface of Mars could be producing organic matter on that planet.… The fact that such organic compounds may be produced on the Martian surface increases the possibility of life on Mars.

    Update

    In 1976, a few years after those experiments, NASA took its search for organic molecules to the Red Planet’s surface. That year, the Viking landers became the first U.S. mission to land on Mars. Though the landers failed to turn up evidence in the soil, NASA has continued the hunt. In 2018, the Curiosity rover found hints of life: organic molecules in rocks and seasonal shifts in atmospheric methane. A new phase of the hunt began in February when the Perseverance rover landed on Mars (SN Online: 2/17/21). It will find and store rocks that might preserve signs of past life for eventual return to Earth. More

  • in

    A new black hole image reveals the behemoth’s magnetic fields

    Astronomers have gotten their first glimpse of the magnetic fields tangled around a black hole.

    The Event Horizon Telescope has unveiled the magnetism of the hot, glowing gas around the supermassive black hole at the heart of galaxy M87, researchers report in two studies published online March 24 in the Astrophysical Journal Letters. These magnetic fields are thought to play a crucial role in how the black hole scarfs down matter and launches powerful plasma jets thousands of light-years into space (SN: 3/29/19).

    “We’ve known for decades that jets are in some sense powered by accretion onto supermassive black holes, and that the in-spiraling gas and the outflowing plasma are highly magnetized — but there was a lot of uncertainty in the exact details,” says Eileen Meyer, an astrophysicist at the University of Maryland, Baltimore County not involved in the work. “The magnetic field structure of the plasma near the event horizon [of a black hole] is a completely new piece of information.”

    The supermassive black hole inside M87 was the first black hole to get its picture taken (SN: 4/10/19). That image showed the black hole’s shadow against its accretion disk — the bright eddy of superhot gas spiraling around the black hole’s dark center. It was created using observations taken in April 2017 by a global network of observatories, which collectively form one virtual, Earth-sized radio dish called the Event Horizon Telescope (SN: 4/10/19).

    [embedded content]
    Using data from 2017, scientists created the first real picture of the supermassive black hole at the center of galaxy M87. How? We explain.

    The new analysis uses the same observations. But unlike the black hole’s initial portrait, the new image accounts for the polarization of the light waves emitted by gas around the black hole. Polarization measures a light wave’s orientation — whether it wiggles up and down, left and right or at an angle — and can be affected by the magnetic field where the light originated. So, by mapping the polarization of light around the edge of M87’s black hole, researchers were able to trace the structure of the underlying magnetic fields.

    The team found evidence that some magnetic fields loop around the black hole along with the disk of material swirling into it. That’s to be expected because “when gas is rotating, it’s basically able to carry along the magnetic field with it,” says Jason Dexter, an astrophysicist at the University of Colorado Boulder.

    But, he says, “there’s some interesting component of this magnetic field which is not just following the motion of the gas.” At least some of the magnetic field lines are sticking up or down perpendicularly from the accretion disk, or pointing directly toward or away from the black hole, Dexter and colleagues found. These magnetic fields must be very strong to resist being dragged around by the whirl of infalling gas, he says.

    Such strong magnetic fields may actually push back against some of the material spiraling in toward the black hole, helping it resist gravity’s pull, says study coauthor Monika Mościbrodzka, an astrophysicist at Radboud University in Nijmegen, the Netherlands. Magnetic fields pointed up and down from the accretion disk could also help launch the black hole’s plasma jets, by channeling material toward the black hole’s poles and giving it a boost in speed, she says.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox More

  • in

    The dark matter mystery deepens with the demise of a reported detection

    First of two parts

    In mystery stories, the chief suspect almost always gets exonerated before the end of the book. Typically because a key piece of evidence turned out to be wrong.

    In science, key evidence is supposed to be right. But sometimes it’s not. In the mystery of the invisible “dark matter” in space, evidence implicating one chief suspect has now been directly debunked. WIMPs, tiny particles widely regarded as prime dark matter candidates, have failed to appear in an experiment designed specifically to test the lone previous study claiming to detect them.

    For decades, physicists have realized that most of the universe’s matter is nothing like earthly matter, which is made mostly from protons and neutrons. Gravitational influences on visible matter (stars and galaxies) indicate that some dark stuff of unknown identity pervades the cosmos. Ordinary matter accounts for less than 20 percent of the cosmic matter abundance.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    For unrelated reasons, theorists have also long suggested that nature possesses mysterious types of tiny particles predicted by a theoretical mathematical framework known as supersymmetry, or SUSY for short. Those particles would be massive by subatomic standards but would interact only weakly with other matter, and so are known as Weakly Interacting Massive particles, hence WIMPs.

    Of the many possible species of WIMPs, one (presumably the lightest one) should have the properties necessary to explain the dark matter messing with the motion of stars and galaxies (SN: 12/27/12). Way back in the last century, searches began for WIMPs in an effort to demonstrate their existence and identify which species made up the dark matter.

    In1998, one research team announced apparent success. An experiment called DAMA (for DArk MAtter, get it?), consisting of a particle detector buried under the Italian Alps, seemingly did detect particles with properties matching some physicists’ expectations for a dark matter signal.

    It was a tricky experiment to perform, relying on the premise that space is full of swarms of WIMPs. A detector containing chunks of sodium iodide should give off a flash of light when hit by a WIMP. But other particles from natural radioactive substances would also produce flashes of light even if WIMPs are a myth.

    So the experimenters adopted a clever suggestion proposed earlier by physicists Katherine Freese, David Spergel and Andrzej Drukier, known formally as an annual modulation test. But let’s just call it the June-December approach.

    As the Earth orbits the sun, the sun also moves, traveling around the Milky Way galaxy, carried by a spiral arm in the direction of the constellation Cygnus. If the galaxy really is full of WIMPs, the sun should be constantly plowing through them, generating a “WIMP wind.” (It’s like the wind you feel if you stick your head out of the window of a moving car.) In June, the Earth’s orbit moves it in the same direction as the sun’s motion around the galaxy — into the wind. But in December, the Earth moves the opposite direction, away from the wind. So more WIMPs should be striking the Earth in June than in December. It’s just like the way your car windshield smashes into more raindrops when driving forward than when going in reverse.

    As the sun moves through space, it should collide with dark matter particles called WIMPs, if they exist. When the Earth’s revolution carries it in the same direction as the sun, in summer, the resulting “WIMP wind” should appear stronger, with more WIMP collisions detected in June than in December.GEOATLAS/GRAPHI-OGRE, ADAPTED BY T. DUBÉ

    At an astrophysics conference in Paris in December 1998, Pierluigi Belli of the DAMA team reported a clear signal (or at least a strong hint) that more particles arrived in June than December. (More precisely, the results showed an annual modulation in frequency of light flashes, peaking around June with a minimum in December.) The DAMA data indicated a WIMP weighing in at 59 billion electron volts, roughly 60 times the mass of a proton.

    But some experts had concerns about the DAMA team’s data analysis. And other searches for WIMPs, with different detectors and strategies, should have found WIMPs if DAMA was right — but didn’t. Still, DAMA persisted. An advanced version of the experiment, DAMA/LIBRA, continued to find the June-December disparity.

    Perhaps DAMA was more sensitive to WIMPs than other experiments. After all, the other searches did not duplicate DAMA’s methods. Some used substances other than sodium iodide as a detecting material, or watched for slight temperature increases as a sign of a WIMP collision rather than flashes of light.

    For that matter, WIMPs might not be what theorists originally thought. DAMA initially reported 60 proton-mass WIMPs based on the belief that the WIMPs collided with iodine atoms. But later data suggested that perhaps the WIMPs were hitting sodium atoms, implying a much lighter WIMP mass — lighter than other experiments had been optimally designed to detect. Yet another possibility: Maybe trace amounts of the metallic element thallium (much heavier atoms than either iodine or sodium) had been the WIMP targets. But a recent review of that proposal found once again that the DAMA results could not be reconciled with the absence of a signal in other experiments.

    And now DAMA’s hope for vindication has been further dashed by a new underground experiment, this one in Spain. Scientists with the ANAIS collaboration have repeated the June-December method with sodium iodide, in an effort to reproduce DAMA’s results with the same method and materials. After three years of operation, the ANAIS team reports no sign of WIMPs.

    To be fair, the no-WIMP conclusion relies on a lot of seriously sophisticated technical analysis. It’s not just a matter of counting light flashes. You have to collect rigorous data on the behavior of nine different sodium iodide modules. You have to correct for the presence of rare radioactive isotopes generated by cosmic ray collisions while the modules were still under construction. And then the statistical analysis needed to discern a winter-summer signal difference is not something you should try at home (unless you’re fully versed in things like the least-square periodogram or the Lomb-Scargle technique). Plus, ANAIS it still going, with plans to collect two more years of data before issuing a final analysis. So the judgment on DAMA’s WIMPs is not necessarily final.

    Nevertheless, it doesn’t look good for WIMPs, at least for the WIMPs motivated by belief in supersymmetry.   

    Sadly for SUSY fans, searches for WIMPs from space are not the only bad news. Attempts to produce WIMPs in particle accelerators have also so far failed. Dark matter might just turn out to consist of some other kind of subatomic particle.

    If so, it would be a plot twist worthy of Agatha Christie, kind of like Poirot turning out to be the killer. For symmetry has long been physicists’ most reliable friend, guiding many great successes, from Einstein’s relativity theory to the standard model of particles and forces.

    Still, failure to find SUSY particles so far does not necessarily mean they don’t exist. Supersymmetry just might be not as simple as it first seemed. And SUSY particles might just be harder to detect than scientists originally surmised. But if supersymmetry does turn out not to be so super, scientists might need to reflect on the ways that faith in symmetry can lead them astray. More

  • in

    Carbon-ring molecules tied to life were found in space for the first time

    Complex carbon-bearing molecules that could help explain how life got started have been identified in space for the first time.

    These molecules, called polycyclic aromatic hydrocarbons, or PAHs, consist of several linked hexagonal rings of carbon with hydrogen atoms at the edges. Astronomers have suspected for decades that these molecules are abundant in space, but none had been directly spotted before.

    Simpler molecules with a single ring of carbon have been seen before. But “we’re now excited to see that we’re able to detect these larger PAHs for the first time in space,” says astrochemist Brett McGuire of MIT, whose team reports the discovery in the March 19 Science.

    Studying these molecules and others like them could help scientists understand how the chemical precursors to life might get started in space. “Carbon is such a fundamental part of chemical reactions, especially reactions leading to life’s essential molecules,” McGuire says. “This is our window into a huge reservoir of them.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Since the 1980s, astronomers have seen a mysterious infrared glow coming from spots within our galaxy and others. Many suspected that the glow comes from PAHs, but could not identify a specific source. The signals from several different PAHs overlap too much to tease any one of them apart, like a choir blending so well, the ear can’t pick out individual voices.

    Instead of searching the infrared signals for a single voice, McGuire and colleagues turned to radio waves, where different PAHs sing different songs. The team trained the powerful Green Bank Telescope in West Virginia on TMC-1, a dark cloud about 430 light-years from Earth near the constellation Taurus.

    The interstellar cloud TMC-1 (top, black filaments) appears as a dark streak on the sky next to the bright Pleiades star cluster (right)Brett A. McGuire

    Previously, McGuire had discovered that the cloud contains benzonitrile, a molecule made of a single carbon ring (SN: 10/2/19). So he thought it was a good place to look for more complicated molecules.

    The team detected 1- and 2-cyanonaphthalene, two-ringed molecules with 10 carbons, eight hydrogens and a nitrogen atom. The concentration is fairly diffuse, McGuire says: “If you filled the inside of your average compact car with [gas from] TMC-1, you’d have less than 10 molecules of each PAH we detected.”

    But it was a lot more than the team expected. The cloud contains between 100,000 and one million times more PAHs than theoretical models predict it should. “It’s insane, that’s way too much,” McGuire says.

    There are two ways that PAHs are thought to form in space: out of the ashes of dead stars or by direct chemical reactions in interstellar space. Since TMC-1 is just beginning to form stars, McGuire expected that any PAHs it contains ought to have been built by direct chemical reactions in space. But that scenario can’t account for all the PAH molecules the team found. There’s too much to be explained easily by stellar ash, too. That means something is probably missing from astrochemists’ theories of how PAHs can form in space.

    “We’re working in uncharted territory here,” he says, “which is exciting.”

    Identifying PAHs in space is “a big thing,” says astrochemist Alessandra Ricca of the SETI Institute in Mountain View, Calif., who was not involved in the new study. The work “is the first one that has shown that these PAH molecules actually do exist in space,” she says. “Before, it was just a hypothesis.”

    Ricca’s group is working on a database of infrared PAH signals that the James Webb Space Telescope, slated to launch in October, can look for. “All this is going to be very helpful for JWST and the research on carbon in the universe,” she says. More

  • in

    ‘Oumuamua may be a chip knocked off an icy, Pluto-like exoplanet

    Since its discovery, the interstellar object known as ‘Oumuamua has defied explanation. First spotted in 2017, it has been called an asteroid, a comet and an alien spaceship (SN: 10/27/17). But researchers think they finally have the mystery object pegged: It could be a shard of nitrogen ice broken off a Pluto-like planet orbiting another star.

    “The idea is pretty compelling,” says Garrett Levine, an astronomer at Yale University not involved in the work. “It does a really good job of matching the observations.”

    ‘Oumuamua’s origin has been a mystery because it looks sort of like a comet, but not quite (SN: 12/18/17). After whipping by the sun, ‘Oumuamua zoomed away slightly faster than gravity alone would allow. That happens when ices on the sunlit sides of comets vaporize, giving them a little rocketlike boost in speed. But unlike comets, ‘Oumuamua didn’t appear to have a tail from typical cometary ices, such as carbon monoxide or carbon dioxide, streaming off it.

    Alan Jackson and Steven Desch, planetary scientists at Arizona State University in Tempe, set out to discover what other kind of evaporating ice could give ‘Oumuamua a big enough nudge to explain its movement. The pair reported their results March 17 at the virtual Lunar and Planetary Science Conference and in two studies published online March 16 in the Journal of Geophysical Research: Planets.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    The amount of force that a vaporizing ice exerts on a comet depends on factors such as how much the ice heats up when it absorbs energy, the mass of its molecules and even the ice’s crystal structure. By calculating the rocketlike push on ‘Oumuamua if it were made of ices such as nitrogen, hydrogen and water, “we learned that nitrogen ice would work perfectly well,” Desch says.

    Because nitrogen ice covers outer solar system bodies such as Pluto and Neptune’s moon Triton, but not smaller objects like comets, ‘Oumuamua is probably a chip off a Pluto-like exoplanet, the researchers report.

    To determine how realistic that scenario is, Jackson and Desch calculated how many chunks of nitrogen ice could have been knocked off Pluto-like bodies in the early solar system. Back then, the Kuiper Belt of objects beyond Neptune was much more crowded than it is today, including thousands of Pluto-like bodies iced with nitrogen. But some 4 billion years ago, Neptune’s orbit expanded. That disruption caused many Kuiper Belt objects to collide with each other, and most sailed out of the solar system altogether.

    Under such chaotic conditions, collisions could have broken trillions of nitrogen ice fragments off Pluto-like bodies, Jackson and Desch estimate. If other planetary systems throw out as many shards of ice, those objects could make up about 4 percent of the bodies in interstellar space. That would make seeing an object like ‘Oumuamua mildly unusual but not exceptional, the researchers say.

    “When I first started reading it, I was skeptical … but it does tick a lot of the necessary boxes,” says Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington, D.C. not involved in the work. “It’s definitely plausible that this could be a fragment of an icy dwarf planet.” But plausible, he notes, does not necessarily mean correct.

    ‘Oumuamua is now too far away to confirm this idea with more observations. But the upcoming Vera Rubin Observatory and European Space Agency’s Comet Interceptor mission could detect more interstellar objects, says Yun Zhang, a planetary scientist at Côte d’Azur Observatory in Nice, France not involved in the research. The Vera Rubin Observatory is expected to spot, on average, one interstellar visitor per year, and the Comet Interceptor spacecraft may actually visit one.

    Getting a closer look at more of these objects could narrow down which possible explanations for ‘Oumuamua are most reasonable, she says (SN: 2/27/19). More

  • in

    A gargantuan supernova remnant looks 40 times as big as the full moon

    A cloud of expanding gas in space is the largest supernova remnant ever seen in the sky, a new study confirms.

    The Milky Way has some 300 known supernova remnants, each made of debris from an exploded star mixed with interstellar material swept up by the blast. This supersized one, located in the constellation Antlia, isn’t necessarily the biggest of all physically, but thanks to its proximity to us, it looks the biggest. As seen from Earth, it spans a region of sky more than 40 times the size of a full moon, astronomer Robert Fesen of Dartmouth College and his colleagues report February 25 at arXiv.org. The Antlia remnant appears about three times as large as the previous champion, the Vela supernova remnant (SN: 7/8/20).

    The star that created the Antlia supernova remnant exploded roughly 100,000 years ago. Estimates of the remnant’s distance vary, so its physical size has yet to be nailed down. But if the cloud is 1,000 light-years away, then it’s about 390 light-years across; if it’s twice as far, then it’s twice as big. Either way, it’s considerably larger than the Vela supernova remnant, which is about 100 light-years wide.

    Vela (shown) had been the largest confirmed supernova remnant as seen from Earth, but the one in Antlia looks three times larger.Robert Gendler, Roberto Colombari, Digitized Sky Survey (POSS II)

    The Antlia remnant isn’t new to astronomers. In 2002, researchers discovered the cloud and proposed that it is the nearby remains of a supernova, based on the red glow of its hydrogen atoms as well as its X-ray emission. But hardly anyone had observed the object since. “It wasn’t really firmly established as a supernova remnant,” says team member John Raymond, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

    So the astronomers studied the cloud at visible and ultraviolet wavelengths, which demonstrate that the Antlia object is indeed a supernova remnant. In particular, the visible light shows spectral signatures of shock waves, which result when high-speed gas from a supernova slams into gas around it.

    “The evidence for it being shocks in a supernova remnant seems to be very good,” says Roger Chevalier, an astronomer at the University of Virginia in Charlottesville not involved with the new work. He notes that the team detected red light from sulfur atoms that are missing one electron, a hallmark of shocks in supernova remnants.

    The astronomer who discovered the object two decades ago had little doubt it was a genuine supernova remnant. “They’ve done good work,” says Peter McCullough at the Space Telescope Science Institute in Baltimore. “This is a case where it looks like a duck, quacks like a duck, walks like a duck and now someone else 20 years later comes along and says, `Not only that, it has feathers.’” More