More stories

  • in

    Venus’ tectonics may be actively reshaping its surface

    Things may be moving on Venus’ surface.

    In 1983, researchers discovered that the planet’s surface was speckled with strange, circular landforms. These rounded mountain belts, known as coronae, have no known Earthly counterparts, and they’ve remained enigmatic for decades. But hot plumes of rock upwelling from Venus’ mantle are shaping the mysterious landforms, a new analysis suggests. If true, that mean that Venus’ surface is tectonically active, and not merely a stagnant layer, researchers report May 14 in Science Advances. More

  • in

    Check out some of the weird rocks that have turned up on Mars

    As the Mars rover Perseverance crested the top of Witch Hazel Hill, its operators back on Earth expected amazing things. This area on the western rim of the Jezero crater, along an ancient river delta that Perseverance has been exploring since it landed in 2021, is thought to contain some of the oldest rocks on the planet’s surface. The light-toned, layered materials promise a record of a wetter time, possibly one that hosted life.

    The team did not expect what they found on March 11: a dark rock resembling a clutch of frog’s eggs. Dubbed St. Paul’s Bay, the rock looks nothing like its neighbors. Where it came from and how it formed are a mystery. More

  • in

    Uranus emits more heat than previously thought

    Uranus emits more energy than it gets from the sun, two new studies report — a discovery that contradicts findings from the venerable Voyager spacecraft.

    When Voyager 2 sped past Uranus on January 24, 1986, the spacecraft detected no significant excess heat from the planet, making it seemingly unique among the sun’s giant worlds. However, new observations from space- and ground-based telescopes reveal that Uranus does in fact radiate more energy than sunlight provides, two research teams report in work submitted to arXiv.org in late February. More

  • in

    Juno reveals dozens of lava lakes on Jupiter’s moon Io

    Jupiter’s moon Io, the most volcanically active body in the solar system, is littered with hundreds of erupting volcanoes. High-resolution images now reveal several dozen lava lakes, researchers report in the February Journal of Geophysical Research: Planets. These lakes are far larger than their analogs on Earth, and their structure sheds light on how magma moves beneath the surface of Io. 

    Io’s volcanism — probably present over the moon’s entire 4.6-billion-year existence — was discovered when the Voyager spacecraft flew by in 1979. The volcanic activity is caused by the intense gravitational pulls of Jupiter and nearby moons, which deform Io by tens of meters. “This squeezing is heating the body,” says Alessandro Mura, a planetary scientist at Italy’s National Institute for Astrophysics in Rome. More

  • in

    A private mission to Venus aims to look for signs of life

    BOSTON —Droplets of Venus’ clouds may someday come to Earth. Researchers are testing a device that can gather mist from our planetary neighbor’s atmosphere and deliver it to scientists so they can test the samples for signs of life.

    Venus is not an obvious place to look for life. Its globe-spanning cloud decks are made of sulfuric acid, “a feature that was long believed to be sterile for any organic chemistry,” said MIT planetary scientist Iaroslav Iakubivskyi in a Feb. 15 talk at a meeting of the American Association for the Advancement of Science.

    But in the last few years, lab experiments by Iakubivskyi and colleagues have suggested that sulfuric acid can support the organic chemistry that gives rise to stable nucleic and amino acids — the building blocks of DNA and proteins. Together, the data suggest that “rather than being a disruptive force, sulfuric acid might actually serve as a potential solvent for life-essential molecules,” he said. “Still, we have to go to Venus to test it.”

    A future mission to Venus could include floating a cloud-catching device from a giant balloon in the planet’s sulfuric acid atmosphere, as shown in this illustration.W. Buchanan

    Iakubivskyi’s team is working with the private spaceflight company Rocket Lab on a series of Venus probes called the Morning Star Missions. The first, a probe that will fall through Venus’ atmosphere and measure the sizes of sulfuric acid droplets, is slated to launch in 2026. A later mission would use a two-ton rocket to launch samples into Venus’ orbit to be picked up by a spacecraft returning to Earth. If successful, Morning Star would be the first private mission to another planet.

    Inspired by fog-catching plants in the Atacama desert, the team built a prototype cloud catcher from four layers of wire mesh. The wires can be charged to ionize atmospheric droplets and attract them to the mesh. More

  • in

    Ancient Mars wasn’t just wet. It was cold and wet

    Frigid water helped paint Mars red and may have shaped a vast coastline, two new studies into the planet’s history reveal.

    Scientists have detected a possible ancient beach in Mars’ northern hemisphere and identified a water-containing mineral responsible for the planet’s rosy hue. The findings reveal details about conditions on Mars when the planet last contained large volumes of liquid water more than 3 billion years ago.

    “Early Mars has historically been thought of as either ‘cold and dry’ or ‘warm and wet,’” says Alberto Fairén, an astrobiologist at the Center for Astrobiology in Madrid and at Cornell University who was not involved in the new work. “The two new studies, together, resolve the second part of the equation: Early Mars was wet; it was never dry.” More

  • in

    The moon’s two grand canyons formed in less than 10 minutes

    A giant impact 3.8 billion years ago sent a curtain of rock flying away from a point near the moon’s south pole. When that curtain fell, its rocks plunged up to 3.5 kilometers into the lunar surface with energies 130 times greater than the global inventory of nuclear weapons, new calculations show.

    And that’s how a hailstorm of boulders carved out two gargantuan canyons on the moon in less than 10 minutes.

    “They landed in a staccato fashion, bang-bang-bang-bang-bang,” says planetary geologist David Kring of the Lunar and Planetary Institute in Houston, who reports the finding February 4 in Nature Communications. More

  • in

    A crumbling exoplanet spills its guts

    NATIONAL HARBOR, MD. — For the first time, astronomers have taken a direct look at an exoplanet’s insides.

    An exoplanet about 800 light-years away is spilling its guts into space, and new observations with the James Webb Space Telescope, or JWST, have let astronomers read the entrails, astronomers report this week at a meeting of the American Astronomical Society.

    “If this is true, it’s super cool,” says astronomer Mercedez López-Morales of the Space Telescope Science Institute in Baltimore, who was not involved in the new work. “For the first time you can study directly what the interior of an exoplanet is made of. That’s exciting.” More