More stories

  • in

    Why do we exist? The meaning of life isn’t to be found in the stars

    We are tiny specks of life in a vast, indifferent cosmos – but to say that decreases the value of our existence is to measure ourselves against the wrong thing

    Life

    17 November 2021

    By Tiffany O’Callaghan
    Wenmei Zhou/Getty Images
    WE CAN attempt to answer the question of why we exist in a literal sense: by tracing our human story back through the whorls and rifts of evolution, through the contested origins of life on Earth and the collapsing cloud of dust and gas that became our home planet 4.5 billion years ago, back to the birth of our universe some 13.8 billion years ago – and perhaps further still (see “Why is there something rather than nothing?”).
    Yet none of this story of happenstance helps us in finding the kind of meaning we crave: meaning in significance. “Now we know that the cosmos contains at least a million billion galaxies, each containing hundreds of billions of stars, most of which have planets around them. In one of these zillions of planets, as probably in many others, chemistry became complex and evolved in all sorts of critters, one of which, not particularly good in surviving, is humankind,” says physicist Carlo Rovelli at Aix-Marseille University in France. “It is clear that any ambition of this humankind to be particularly significant in the grand scheme of things looks silly.”
    That realisation was certainly a big deal when it first brought gods and mythologies we created crashing down, says Victor Strecher, who studies the importance of purpose for our well-being at the University of Michigan. That started in earnest in the 1700s, as scientific inquiry began to upend our assumptions about our central place in the universe. Simultaneously, the industrial revolution first saw people leaving long-established rural communities and venturing out into a wider world in large numbers.
    The mistake, says … More

  • in

    Distant rocky planets may have exotic chemical makeups that don’t resemble Earth’s

    If a real Captain Kirk ever blasts off for other stars in search of rocky planets like ours, he may find lots of strange new worlds whose innards actually bear no resemblance to Earth’s.

    A smattering of heavy elements sprinkled on 23 white dwarf stars suggests that most of the rocky planets that once orbited the stars had unusual chemical makeups, researchers report online November 2 in Nature Communications. The elements, presumably debris from busted-up worlds, provide a possible peek at the planets’ mantles, the region between their crust and core.

    “These planets could be just utterly alien to what we’re used to thinking of,” says geologist Keith Putirka of California State University, Fresno.  

    But deducing what a long-gone planet was made of from what it left behind is fraught with difficulties, cautions Caltech planetary scientist David Stevenson. Rocky worlds outside of the solar system may have exotic chemical compositions, he says. “It’s just that I don’t think this paper can be used to prove that.”

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!

    There was a problem signing you up.

    After a star like the sun expands into a red giant star, it ultimately blows off its atmosphere, leaving behind its small, dense core, which becomes a white dwarf. That star’s great gravity drags heavy chemical elements into its interior, so most white dwarfs have pristine surfaces of hydrogen and helium.

    But more than a quarter of these stars sport surfaces with heavier elements such as silicon and iron, presumably from planets that once circled the star and met their ends when it expanded into a red giant (SN: 8/15/11). The heavy elements on these white dwarfs haven’t yet had time to sink beneath the stellar surface.

    For that reason, Siyi Xu, an astronomer at the Gemini Observatory in Hilo, Hawaii, has long studied white dwarfs. Then she met Putirka. Because he’s a geologist, “he was like, ‘Oh! We can look at this problem from a new perspective,’” Xu says.

    Xu had been measuring the abundances of chemical elements littered on white dwarfs by studying the wavelengths of light, or spectra, given off by the stars. Putirka realized that those measurements could indicate what rocks and minerals had made up the destroyed planets’ mantles, which constitute the bulk of a small planet’s rock, because different rocks and minerals contain different chemical elements.

    By examining white dwarfs within 650 light-years of the sun, Putirka and Xu reached a startling conclusion about the ripped-apart rocky planets. Contrary to conventional wisdom, most of their planetary mantles didn’t resemble those of the sun’s rocky planets — Mercury, Venus, Earth and Mars, the researchers say.

    For example, some of the white dwarfs have lots of silicon. That suggests that their planets’ mantles had quartz — a mineral that in its pure form consists solely of silicon and oxygen. But there’s little, if any, quartz in Earth’s mantle. A planet with a quartz-rich mantle would probably differ greatly from Earth, Putirka says.

    Such exotic mineral compositions might affect, for example, volcanic eruptions, continental drift and the fraction of a planet’s surface that consists of oceans versus continents. And all those phenomena might affect the development of life.

    Stevenson, however, is skeptical of the new finding. When you measure the elemental composition of a “polluted white dwarf,” he says, “you do not know how to connect those numbers to what you started with.”

    That’s partly because the destruction of rocky worlds around sunlike stars is complicated, Stevenson says. The planets first get blasted by the red giant’s bright light. Then they may get engulfed by the star’s expanding atmosphere and may even crash into another planet.

    Each of these traumatic events could alter a planet’s elemental makeup, as well as possibly send some elements toward the white dwarf ahead of others. As a result, the planetary remains that end up on the star’s surface at one snapshot in time may not reflect the world’s starting composition.

    Xu agrees that astronomers don’t know precisely how the breakup plays out or which elements wind up falling onto the white dwarf. Future theoretical studies could provide insight into the matter, she says. 

    She also notes that astronomers have caught asteroids disintegrating around white dwarfs, which offer a small window into the actual breakup process. And future observations of these white dwarfs, she says, could help reveal any changes in elemental composition over time. More

  • in

    Having impostor syndrome may actually make you better at your job

    People who are less confident at work were rated as having better interpersonal skills, suggesting there may be upsides to impostor syndrome

    Humans

    14 November 2021

    By Alice Klein
    People who doubted themselves more were rated as having better interpersonal skills by their supervisorsSFIO CRACHO/Shutterstock
    People with “impostor syndrome”, who feel underqualified for their jobs, tend to make better employees because they compensate by striving to be likeable, empathetic and collaborative, new research suggests.
    The term impostor syndrome was coined in 1978 by two psychologists who studied women with illustrious careers. These women still believed they were “really not bright” and thought they had risen to their distinguished positions through luck or error.
    These impostor thoughts have since been found to … More

  • in

    Our Human Story newsletter: The patterns of domestication

    By Michael Marshall
    Gray WolfAB Photographie/Shutterstock
    Hello, and welcome to Our Human Story, New Scientist’s monthly newsletter all about human evolution and the origin of our species. To receive this free monthly newsletter in your inbox, sign up here.
    This month, prompted by the arrival of our family’s new kitten Peggy, I’m gently pawing at humanity’s relationship with animals. In recent years, we’ve learned a lot about when and where different species were domesticated – but to me this just raises even more questions.
    Animal friends
    It’s a truism that humans have exerted an outsized influence on the natural world. We have domesticated dozens of animals and plants. There are the familiar examples like cats, chickens and maize, but also many that aren’t so familiar in the Western world, like the dozens of crops domesticated by farmers (if that is exactly the right word) in the Amazon rainforest over millennia.Advertisement
    As with many aspects of prehistory, the more we learn, the older domestication looks. Until relatively recently, it was thought that every domestication took place within the past 11,000 years. This period is known as the Holocene, when the climate has been relatively stable and when some humans took up habits like sedentary farming, urban living and writing. But one domestication preceded it: dogs.
    We still haven’t pinned down when and where this happened, but dogs were being buried alongside people as if they were pets at least around 14,000 years ago, and they may have split from wolves up to 40,000 years ago. There was possibly more than one domestication event, with only some leaving living descendants. But what’s clear is that it was pre-Holocene and before the advent of permanent settled farming. It may have begun with a form of cooperative hunting.
    Set against this are the many clear examples of domestication during the Holocene. For example, I recently wrote about a massive genetic study of horses, which showed that modern domestic horses are descended from a population that lived in what is now Russia, around the Volga and Don rivers, about 4200 years ago. The domestication may have begun a little earlier, but only by a few centuries.
    How can we explain why domestication happened so late?
    Fascinated by beasts
    People were obsessed with animals long before we domesticated any. We can see this in prehistoric art, of which we have clear evidence dating back to 45,000 years ago. Think of the cave paintings in Chauvet cave in France, which Werner Herzog brought to the screen in Cave of Forgotten Dreams. They’re startling in their realism and sense of movement. And they’re almost entirely paintings of animals.

    This holds true across Europe – where most studies of cave art have been done – and elsewhere in the world, including Indonesia. Ancient painters spent enormous effort portraying animals in a realistic way. But they couldn’t be bothered with illustrating people: when people are depicted in cave art, they’re rarely better than stick figures.
    In a sense, the absence of people in the art is the more mysterious bit. Why weren’t people interested in depicting each other?
    Most cultures place enormous symbolic importance on animals. Think of English lions (even though there haven’t been wild lions in Britain for millennia), American eagles and the many versions of “familiars” and “were-animals” that have arisen in cultures all over the world. Think of the rabbits of Watership Down, Anansi the West African spider god, and the ancient Egyptian worship of cats.
    It’s almost too easy to think of reasons why prehistoric people were interested in animals. First, humans and our ancestors have been eating meat for a very long time. Exactly when we started is contentious, but we’ve certainly been at it for hundreds of thousands of years. This must have required an enormous amount of knowledge: of the animals’ movements, their behaviours, how they defended themselves. To make a success of their lifestyle, prehistoric people had to take a keen interest in animals.
    Similarly, plenty of animals posed a danger. Predators like cave bears and sabre-toothed cats are just the most obvious. There are also inherent dangers from massive herbivores like mammoths and giant ground sloths: even if they don’t want to eat you, they can still trample you.
    I’ve been reading John Bradshaw’s The Animals Among Us, and he argues that understanding animals is as profoundly human as language or self-reflection. I think he might be right. The capacity and urge to understand animals, to predict what they will do and even manage their behaviour, is an ancient one.

    Wild domestication

    The more I think about domestication, the more I’m baffled at how late it happened. Our species has existed for something like 300,000 years, and other hominins like Neanderthals were similarly skilled at dealing with animals. Why weren’t dogs domesticated 100,000 years ago, or even earlier?
    I don’t think it is a matter of intelligence. The fact is that domestication doesn’t require unusual foresight or brainpower. If it did, it wouldn’t happen in the natural world. Think of the many ants that have domesticated other species. There are ants that plant seeds, cultivate fungus, “milk” aphids for sugary liquid or even farm other animals for meat. I very much doubt that the ancestral ants had any kind of plan for this. Instead, I think that the species involved found advantages in living together and gradually adapted over many generations. If ants can domesticate other species in this unconscious, gradual way, so could prehistoric people. Why didn’t they?
    I don’t have a firm answer for this, but I do have a tentative thought. It’s a curious fact that not many animals were domesticated in the Americas, compared with Eurasia and Africa. Llamas and alpacas are almost the only ones. A lot of ink has been spilled, for instance in Jared Diamond’s Guns, Germs and Steel, trying to work out why American animals were so resistant to domestication. I wonder if it’s because people hadn’t been living there as long. There have been hominins in Eurasia and Africa for millions of years, but people only made it to the Americas in the past few tens of thousands of years. Maybe the animals in Eurasia and Africa had simply had longer to adapt to the two-legged apes in their midst, priming them to be domesticated. The American animals had a shorter history with people.
    In other words, I think the reason most domestications happened in the past 10,000 years isn’t because people only then thought of it, but because species need to co-exist for a long time before they can form such close relationships. My colleague Krista Charles recently reported that wolf puppies raised by humans become just as close to their carers as dog puppies. Wolves are still wild animals, yet they can form relationships with us that most animals can’t.
    I’m pretty sure this doesn’t make sense of everything. It does seem like a gigantic coincidence that so many domestications happened in the past 10,000 years, but I’m very uncertain as to why. A particular problem is that domestications happened for different reasons: dogs seem to have been helping us hunt, while horses may have first been domesticated for their milk. So, it may be a mistake to look for a single overarching explanation.
    To see what I mean, take the baffling example of tobacco (baffling to me anyway as I’ve always absolutely hated the smell). We recently learned that people were using tobacco at least 12,300 years ago. That’s millennia before the plant became domesticated. It has no nutritional value and doesn’t even give you interesting hallucinations – but people smoked it anyway.

    Don’t miss this story
    Ettore MazzaEttore Mazza
    A new hominin species has been named – but it may not stick. Researchers led by Mirjana Roksandic have proposed Homo bodoensis as a new name for a bunch of African fossils that lived hundreds of thousands of years ago in the Middle Pleistocene. This is a particularly confusing period of human evolution: there were several species co-existing, and many of the fossils are hard to classify, so we don’t know how widespread each species was, how long it lasted, or which species gave rise to which others. It’s all a bit of a muddle. H. bodoensis is meant to be an umbrella term for all the African hominins with big brains that were alive at the time. It has the advantage of simplicity – and the reference to the Bodo cranium discovered in Ethiopia makes it an African name, which I think is a good thing. However, the rules of nomenclature say that the earliest species names have priority, and several of the fossils in question have already been given names.
    From the archive
    The ancient Maya culture is one of the most fascinating in archaeology. It’s surprising to me that there are so few depictions of the Maya in books and film, at least in the English language. The Maya were one of the most technologically advanced cultures in the Americas for hundreds of years. They had writing and drew accurate astronomical tables, planted orchards of nut trees, created vivid blue dyes, and built vast cities. Archaeologically, the most conspicuous things are the enormous monuments they built – more of which are found every year. Around AD 800, the Maya stopped building monuments and this has been interpreted as a collapse of the civilisation, probably fuelled by an intense drought. I think it’s more correct to say that the Mayan social structure collapsed – that is, the elites were deposed. It wasn’t that everybody died so much as there was a revolution.
    Also in New Scientist
    1. Tatanka Iyotake, popularly known as Sitting Bull, was one of the most famous Native American leaders – and a new DNA study adds to evidence that he has living descendants.
    2. We now know that Vikings were in North America in the year AD 1021, exactly 1000 years ago – although they might have arrived even earlier.
    3. Iron Age miners ate blue cheese and drank beer, according to a study of their faeces.
    See you next month!

    More on these topics: More

  • in

    Origins of Japanese and Turkish language family traced back 9000 years

    Millet farmers living 9000 years ago in what is now north-east China may have spoken a proto-Transeurasian language that gave rise to Japanese, Turkish and other modern tongues

    Humans

    10 November 2021

    By Carissa Wong
    A woman carrying millet, a crop whose cultivation prompted the spread of the proto-Transeurasian languageFrank Bienewald / Alamy
    A vast Transeurasian language family that contains the Japanese, Korean, Mongolian, Turkish and Tungusic languages has had its origins traced back 9000 years, to early farming communities in what is now north-east China.
    Transeurasian languages are spoken across a wide region of Europe and northern Asia. Until now, researchers assumed that they had spread from the mountains of Mongolia 3000 years ago, spoken by horse-riding nomads who kept livestock but didn’t farm crops.
    Martine Robbeets at the Max Planck Institute for the Science of Human History in Jena and her colleagues used linguistic, archaeological and genetic evidence to conclude instead that it was the onset of millet cultivation by farmers in what is now China that led to the spread of the language family.Advertisement
    The team did this by studying the linguistic features of the languages and using computational analysis to map their spread through space and time based on their similarities to each other. Doing so allowed Robbeets and her team to trace the proto-Transeurasian language back to the Liao river area of north-east China around 9000 years ago.
    This is the exact time and place that millet is known to have been domesticated, according to archaeological evidence, says Robbeets.

    By adding genetic information and carbon-dating millet grains, the team revealed that the proto-Transeurasian-speaking population split into separate communities that then started adopting early forms of Japanese, Korean and the Tungusic languages to the east of the original site, as well as early forms of Mongolic languages to the north and of Turkic languages to the west.
    “We have languages, archaeology and genetics which all have dates. So we just looked to see if they correlated,” says Robbeets.
    Around 6500 years ago, the descendants of some of these farmers moved eastwards into Korea, where they learned to cultivate rice around 3300 years ago, spurring the movement of people from Korea to Japan.
    “We all identify ourselves with language. It’s our identity. We often picture ourselves as one culture, one language, one genetic profile. Our study shows that like all populations, those in Asia are mixed,” says Robbeets.
    The researchers were also surprised to discover the first evidence that Neolithic Korean populations reproduced with Jōmon people, who were previously thought to have lived solely in Japan.
    “This study highlights the richness of the narrative that can be developed when linguistic, archaeological and genetic data are all considered,” says Melinda Yang at the University of Richmond in Virginia.
    Journal reference: Nature, DOI: 10.1038/s41586-021-04108-8

    More on these topics: More

  • in

    A stunning simulation re-creates how M87’s black hole launches plasma jets

    From the maw of the supermassive black hole at the center of the galaxy M87, two enormous jets stream thousands of light-years into space. Scientists still don’t fully understand the physics behind the jets, which are made of a mix of electrically charged particles, or plasma (SN: 3/24/21). But they are “really, really amazing,” says astrophysicist Alejandro Cruz-Osorio of Goethe University Frankfurt. So he and colleagues created a computer simulation of M87’s black hole and the swirling gas that surrounds it in an accretion disk. The aim: Figure out how this black hole — already famous for posing for a picture in 2019 (SN: 4/10/19) — became such a jet-setter.

    Under the right conditions, that simulation produces jets that match observations of M87, the researchers report November 4 in Nature Astronomy. The black hole twists up spiraling magnetic fields that surround two high-energy beams of electrons and other charged particles. The results suggest that the black hole must be spinning rapidly, at more than half its maximum speed allowed by the laws of physics and possibly as much as 94 percent of its maximum possible speed.

    Getting the energies of the jets’ electrons right turned out to be crucial. When magnetic fields in the jets rearrange in a process known as magnetic reconnection (SN: 8/3/21), electrons get accelerated, resulting in more of them having very high energies. This effect was not included in earlier simulations, but it was key to getting the simulated jets to act like real-world counterparts. More

  • in

    Lost capital city of the Mongol Empire was far bigger than thought

    The city, built by the son of Genghis Khan, was once thought to be about one-tenth as big as it actually was

    Humans

    9 November 2021

    By Michael Marshall
    Distribution of Mongol-period sites documented during a 2016–2017 survey© Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and the GIS User Community; graphic by S. Reichert
    The capital of the Mongol Empire has been mapped in unprecedented detail. It turns out that the city of Karakorum was far larger than once thought and was quite unlike medieval European cities in its layout.
    In the late 1100s and early 1200s, the Mongol leader Temüjin established a vast empire spanning much of Asia and Europe.
    Temüjin became known as Chinggis Khan, and is also remembered as Genghis Khan in many nations today. After his death in 1227 … More

  • in

    First partial skull of a Homo naledi child found in South Africa

    The skull of a small child belonging to a different human species has been found deep in a cave system in South Africa. They have been named “Leti”. Leti’s skull was found in a narrow fissure that is almost impossible to access. For that reason, the discoverers argue that the skull was placed there deliberately, as a form of funerary practice. They say it is evidence that hominins have been performing funerary rights for hundreds of thousands of years – even hominins with brains much smaller than ours.

    Tags: More