More stories

  • in

    There's room for a green middle ground in the UK's culture wars

    By Graham Lawton

    Matthew Horwood/Getty Images
    A COUPLE of weeks ago, I had an experience that was new to me, and which proved both infuriating and enlightening: I was harangued on Twitter for not being green enough. Last month, I wrote about driving my sick cat to and from the vet, and how the gridlocked traffic looked like a depressing taste of our post-pandemic future. “Shocked by yr column blaming traffic,” my chastiser tweeted at me. “You ARE the traffic; have you tried cycling?”
    Deeply unfair. But it gave me a glimpse of what many people must feel when their behaviour falls short of the standards … More

  • in

    Striking image of covid-19 clean-up is among photo contest finalists

    By Gege Li

    Aly Song/Wellcome Photography Prize 2021
    Wellcome Photography Prize 2021
    THESE poignant and intensely personal images are among the winners and finalists in the Wellcome Photography Prize 2021, run by health research foundation Wellcome.
    The competition focuses on three of the most urgent global health challenges: mental health, global warming and infectious disease. There are two top prizes, one for a single image and one for an image series.Advertisement
    Above is The Time of Coronavirus by finalist Aly Song. Taken in April 2020, volunteers are disinfecting Qintai Grand Theatre in Wuhan, China, the city where covid-19 cases were first detected.
    Next,  is a shot from Yoppy Pieter, winner of the image series prize, called Trans Woman: Between colour and voice. It shows one aspect of life for transgender women in Indonesia, with Lilis (centre), a trans woman, being tested for HIV in South Tangerang. It can be difficult for trans women in the country to access healthcare without official documents.
    Yoppy Peiter/Wellcome Photography Prize 2021
    Below is Climate Cost by finalist Zakir Hossain Chowdhury. The devastating image was taken three months after Cyclone Amphan struck Bangladesh in May 2020. The cyclone is estimated to have left half a million people homeless.
    Zakir Hossain Chowdhury/Wellcome Photography Prize 2021
    The final image, at bottom right, is Untangling by Jameisha Prescod, winner of the single image prize. It illustrates her isolation through a photo taken in her bedroom during lockdown. She turned to knitting to ease her mind, she says.
    Jameisha Prescod/Wellcome Photography Prize 2021

    More on these topics: More

  • in

    Lost art of the Stone Age: The cave paintings redrawing human history

    Newly discovered cave art gives fresh insight into the minds of our ancestors – and upends the idea that a Stone Age cultural explosion was unique to Europe

    Humans

    28 July 2021

    By Alison George

    This pig painting from Leang Tedongnge cave on Sulawesi is at least 45,500 years oldAA Oktaviana
    IN 1879, an 8-year-old girl made a discovery that would rock our understanding of human history. On the walls of Altamira cave in northern Spain, she spotted stunning drawings of bison, painted in vivid red and black. More striking even than the images was their age: they were made thousands of years ago by modern humans’ supposedly primitive ancestors. Today, nearly 400 caves across Europe have been found decorated with hand stencils, mysterious symbols and beautiful images of animals created by these accomplished artists.
    The discoveries led to the view that artistic talent arose after modern humans arrived in the region some 40,000 years ago, as part of a “cultural explosion” reflecting a flowering of the human mind. But more recent evidence has blown this idea out of the water. For a start, modern humans might not have been the first artists in Europe, as paintings discovered in a Spanish cave in 2018 have revealed. What’s more, a treasure trove of cave paintings emerging in Indonesia has dispelled the idea that Europe was the epicentre of creativity. Indeed, discoveries in Africa indicate that humans were honing their artistic skills long before groups of them migrated to the rest of the world.
    The real puzzle is why Stone Age cave art seems to be concentrated in a few locations. Could it be hiding elsewhere in plain sight, unnoticed, unrecognised or obscured? Efforts are now under way to track down this missing art, with growing success. … More

  • in

    The tiny dot in this image may be the first look at exomoons in the making

    New telescope images may provide the first view of moons forming outside the solar system.

    The Atacama Large Millimeter/submillimeter Array in Chile glimpsed a dusty disk of potentially moon-forming material around a baby exoplanet about 370 light-years from Earth. The Jupiter-like world is surrounded by enough material to make up to 2.5 Earth moons, researchers report online July 22 in the Astrophysical Journal Letters. Observations of this system could offer new insight into how planets and moons are born around young stars.

    ALMA observed two planets, dubbed PDS 70b and 70c, circling the star PDS 70 in July 2019. Unlike most other known exoplanets, these two Jupiter-like worlds are still forming — gobbling up material from the disk of gas and dust swirling around their star (SN: 7/2/18). During this formation process, planets are expected to wrap themselves in their own debris disks, which control how planets pack on material and form moons.

    Around PDS 70c, ALMA spotted a disk of dust about as wide as Earth’s orbit around the sun. With previously reported exomoon sightings still controversial, the new observations offer some of the best evidence yet that planets orbiting other stars have moons (SN: 4/30/19).

    Unlike PDS 70c, 70b does not appear to have a moon-forming disk. That may be because it has a narrower orbit than PDS 70c, which is nearly as far from its star as Pluto is from the sun. That puts PDS 70c closer to an outer disk of debris surrounding the star.

    Just inside a ring of debris surrounding a young star is the planet PDS 70c, which is surrounded by its own disk of possible moon-forming material (bright dot at center).ALMA/ESO, NAOJ and NRAO, M. Benisty et al

    “C is getting all the material from the outer disk, and b is getting starved,” says study coauthor Jaehan Bae, an astrophysicist at the Carnegie Institution for Science in Washington, D.C.

    “In the past, b must have gotten some material in its [disk], and it could have already formed moons,” Bae says. But to make the new images, ALMA observed wavelengths of light emitted by sand-sized dust grains, not large objects, so those moons would not be visible. More

  • in

    Most detailed human genome sequence yet reveals our hidden variation

    By Michael Marshall

    We are still learning more about the human genomeShutterstock / Explode
    A new, more complete version of the human genome is already bearing fruit after being released two months ago. It has revealed enormous amounts of genetic variation between people that couldn’t previously be detected – variation that may underlie diseases.
    “There were variants that were hiding in plain sight,” says Megan Dennis at the University of California, Davis.
    Other studies suggest that the new genome will finally reveal the functions of seemingly useless “junk DNA”. This DNA is repetitive, which means it has … More

  • in

    We thought our eyes turned off when moving quickly, but that's wrong

    By Krista Charles

    When looking at a scene (left), each quick eye movement creates motion streaks (right) on the retina that we don’t consciously perceiveMartin Rolfs
    It has sometimes been assumed that we experience brief periods without vision every time we shift our focus from one point to another – but it turns out this is wrong.
    Several times each second, we quickly change our line of sight, shifting our focus from one point in a scene to another. These fast, jerky eye movements, or saccades, each last less than 50 milliseconds, and our vision is reduced during that time. Some people have argued that our eyes lose their ability to process visual information in this time.
    Richard Schweitzer and Martin Rolfs at Humboldt University of Berlin in Germany have shown that this isn’t the case: we are, in fact, able to absorb information from our surroundings during such rapid eye movements.Advertisement
    “This kind of changes the way we approach perception because we used to think about motor actions and perception as two distinct things,” says Rolfs. “What this insight shows, I think, is that as we continue to interact between how we move and what we perceive, that it’s not two separate processes. It’s two things working together; they go hand in hand.”

    The pair worked with 20 volunteers who were asked to seek out and focus on a visual target displayed on a screen, which naturally encouraged their eyes to dart around performing saccades. However, the target on the screen was shown using a high-speed projector that was capable of generating about 70 images during each 50-millisecond-long saccade. This meant the researchers could have the target move smoothly so that its position at the end of the saccade was different from its position at the start.
    The volunteers detected this within-saccade movement: at the end of the saccade, when their eyes looked for the target again, they seemed to have anticipated where the target would now be located. The researchers could confirm this because the volunteers were able to correct their eye movement to locate the target more quickly than would have been the case had their eyes not detected the target’s movement during the saccade.
    “The paper suggests that during eye movements, what is left of motion streaks (the traces left in our visual system by fast-moving objects) helps perception, whereas it is a disturbance when the eyes are steady,” says Paola Binda at the University of Pisa in Italy. “This point would need direct testing, of course, but it is an intriguing one.”
    “The only potential criticism I can see is that the results were obtained with stimuli ingeniously designed to investigate these effects, but it is not clear whether any of this occurs in natural vision – as the authors admit,” says Karl Gegenfurtner at Justus Liebig University Giessen in Germany.
    Journal reference: Science Advances, DOI: 10.1126/sciadv.abf2218

    More on these topics: More

  • in

    How do scientists calculate the age of a star?

    We know quite a lot about stars. After centuries of pointing telescopes at the night sky, astronomers and amateurs alike can figure out key attributes of any star, like its mass or its composition.

    To calculate a star’s mass, just look it its orbital period and do a bit of algebra. To determine what it’s made of, look to the spectrum of light the star emits. But the one variable scientists haven’t quite cracked yet is time.

    “The sun is the only star we know the age of,” says astronomer David Soderblom of the Space Telescope Science Institute in Baltimore. “Everything else is bootstrapped up from there.”

    Even well-studied stars surprise scientists every now and then. In 2019 when the red supergiant star Betelgeuse dimmed, astronomers weren’t sure if it was just going through a phase or if a supernova explosion was imminent. (Turns out it was just a phase.) The sun also shook things up when scientists noticed that it wasn’t behaving like other middle-aged stars. It’s not as magnetically active compared with other stars of the same age and mass. That suggests that astronomers might not fully understand the timeline of middle age.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Thank you for signing up!
    There was a problem signing you up.

    Calculations based on physics and indirect measurements of a star’s age can give astronomers ballpark estimates. And some methods work better for different types of stars. Here are three ways astronomers calculate the age of a star.

    Hertzsprung-Russell diagrams

    Scientists do have a pretty good handle on how stars are born, how they live and how they die. For instance, stars burn through their hydrogen fuel, puff up and eventually expel their gases into space, whether with a bang or a whimper. But when exactly each stage of a star’s life cycle happens is where things get complicated. Depending on their mass, certain stars hit those points after a different number of years. More massive stars die young, while less massive stars can burn for billions of years.

    At the turn of the 20th century, two astronomers — Ejnar Hertzsprung and Henry Norris Russell — independently came up with the idea to plot stars’ temperature against their brightness. The patterns on these Hertzsprung-Russell, or H-R, diagrams corresponded to where different stars were in that life cycle. Today, scientists use these patterns to determine the age of star clusters, whose stars are thought to have all formed at the same time.

    The caveat is that, unless you do a lot of math and modeling, this method can be used only for stars in clusters, or by comparing a single star’s color and brightness with theoretical H-R diagrams. “It’s not very precise,” says astronomer Travis Metcalfe of the Space Science Institute in Boulder, Colo. “Nevertheless, it’s the best thing we’ve got.”

    [embedded content]
    Measuring a star’s age isn’t as easy as you’d think. Here’s how scientists get their ballpark estimates.

    Rotation rate

    By the 1970s, astrophysicists had noticed a trend: Stars in younger clusters spin faster than stars in older clusters. In 1972, astronomer Andrew Skumanich used a star’s rotation rate and surface activity to propose a simple equation to estimate a star’s age: Rotation rate = (Age) -½.

    This was the go-to method for individual stars for decades, but new data have poked holes in its utility. It turns out that some stars don’t slow down when they hit a certain age. Instead they keep the same rotation speed for the rest of their lives.

    “Rotation is the best thing to use for stars younger than the sun,” Metcalfe says. For stars older than the sun, other methods are better.

    Stellar seismology

    The new data that confirmed rotation rate wasn’t the best way to estimate an individual star’s age came from an unlikely source: the exoplanet-hunting Kepler space telescope. Not just a boon for exoplanet research, Kepler pushed stellar seismology to the forefront by simply staring at the same stars for a really long time.

    Watching a star flicker can give clues to its age. Scientists look at changes in a star’s brightness as an indicator of what’s happening beneath the surface and, through modeling, roughly calculate the star’s age. To do this, one needs a really big dataset on the star’s brightness — which the Kepler telescope could provide.

    “Everybody thinks it was all about finding planets, which was true,” Soderblom says. “But I like to say that the Kepler mission was a stealth stellar physics mission.”

    This approach helped reveal the sun’s magnetic midlife crisis and recently provided some clues about the evolution of the Milky Way. Around 10 billion years ago, our galaxy collided with a dwarf galaxy. Scientists have found that stars left behind by that dwarf galaxy are younger or about the same age as stars original to the Milky Way. Thus, the Milky Way may have evolved more quickly than previously thought.

    As space telescopes like NASA’s TESS and the European Space Agency’s CHEOPS survey new patches of sky, astrophysicists will be able to learn more about the stellar life cycle and come up with new estimates for more stars.

    Aside from curiosity about the stars in our own backyard, star ages have implications beyond our solar system, from planet formation to galaxy evolution — and even the search for extraterrestrial life.

    “One of these days — it’ll probably be a while — somebody’s going to claim they see signs of life on a planet around another star. The first question people will ask is, ‘How old is that star?’” Soderblom says. “That’s going to be a tough question to answer.” More

  • in

    Ancient Roman road discovered at the bottom of the Venice lagoon

    By Krista Charles

    Reconstruction of the roman road in the Treporti channel in the Venice lagoonAntonio Calandriello and Giuseppe D’Acunto
    An ancient and now submerged road has been discovered in the Venice lagoon in an area that would have been accessible by land 2000 years ago during the Roman era.
    Fantina Madricardo at the Marine Science Institute in Venice and her colleagues made the discovery after mapping the floor of an area of the lagoon called the Treporti channel.
    “We believe it was part of the network of Roman roads in the north-east of the Venice area,” says Madricardo.Advertisement
    In the 1980s, the archaeologist Ernesto Canal proposed that there are ancient human-made structures submerged in the Venice lagoon. This suggestion prompted decades of debate, but couldn’t be confirmed until now as the previously available technology was insufficiently advanced to explore such a challenging environment.
    “The area is very difficult to investigate by divers because there are strong currents and the water in the Venice lagoon is very turbid,” says Madricardo.
    The team used a multibeam echosounder mounted on a boat to form a picture of what lies underwater. This device sends out acoustic waves that bounce off the lagoon floor, allowing the team to reconstruct images of whatever structures are down there.

    The researchers found 12 structures up to 2.7 metres tall and 52.7 metres long that extended along 1140 metres in a south-west to north-eastern direction in the configuration of a road. The presence and layout of these structures suggest that there may have been a settlement in the area. It was then submerged about 2000 years ago – partly due to human activity that diverted the flow of rivers and starved the area of the sediment that was needed to keep it above water.
    “Presumably, the road is giving access to this rich environment. The margins of the land and the water are full of resources that people might have been exploiting,” says James Gerrard at Newcastle University in the UK. “It’s not normal to find, if you like, ‘drowned’ landscapes or be able to study them in this kind of detail.”
    Journal reference: Scientific Reports, DOI: 10.1038/s41598-021-92939-w
    Sign up to Our Human Story, a free monthly newsletter on the revolution in archaeology and human evolution

    More on these topics: More