More stories

  • in

    Systemic racism: What research reveals about the extent of its impact

    We spoke to five researchers working to demonstrate the various ways that racial discrimination is embedded in the structures and procedures that underpin US society

    Humans 18 November 2020
    By Layal Liverpool

    Marta D’Asaro

    THE explosion of the Black Lives Matter movement into mainstream awareness has brought the prevalence of systemic racism and anti-Black bias into sharp focus. This isn’t confined to individual acts and attitudes. It is racism deeply embedded as normal practice in the systems, structures and institutions that underpin society. And although it remains invisible to some, a growing body of research shows that systemic racism has a hugely detrimental impact on people across the world.
    In the US, where the most recent wave of anti-racism protests began, Black people are far more likely to be arrested and incarcerated than white people for the same crimes. But the issues faced in the US and other countries go far beyond law enforcement. We know that racism is also baked into housing, education, employment and healthcare systems. In the US, UK and elsewhere, for example, the disproportionate impact of the coronavirus pandemic on people from Black and ethnic minority (BAME) backgrounds has put a powerful spotlight on the way societal inequalities affect health and vulnerability to disease.
    And yet researchers are still working to understand how societies hold back and harm BAME communities, running experiments and analysing existing data with fresh eyes to uncover all the manifestations of systemic racism. We spoke to five US-focused scientists who investigate concealed discrimination in various aspects of everyday life, from children’s academic development to health and disease in adulthood and interactions with technology.
    EDUCATIONAL INEQUITY

    Daphne Henry is a developmental and educational psychologist at Boston College in Massachusetts
    In the US, Black children tend to get lower scores in reading and mathematics tests compared … More

  • in

    Away review: An exquisite animated film created entirely by one person

    Feature-length animation Away was created solely by film-maker Gints Zilbalodis. The writing, animation and soundtrack are all uncomplicated, and the storytelling is all the better for it, says Simon Ings

    Humans 18 November 2020

    Away tells the story of a boy pursued by a strange, humanoid figure
    Subliminal Films

    Film
    Away
    Gints Zilbalodis
    At selected cinemas, with a digital release in early 2021
    A BARREN landscape at sun up. From the cords of his deflated parachute, dangling from the twisted branch of a dead tree, a boy slowly wakes to his surroundings, just as a figure appears out of the dawn’s dreamy desert glare. Humanoid but not human, faceless yet inexpressibly sad, the giant figure shambles towards the boy, bends and, though mouthless, tries somehow to swallow him.
    The boy unclips himself from his … More

  • in

    Planets with many neighbors may be the best places to look for life

    If you’re looking for life beyond the solar system, there’s strength in numbers.
    A new study suggests that systems with multiple planets tend to have rounder orbits than those with just one, indicating a calmer family history. Only child systems and planets with more erratic paths hint at past planetary sibling clashes violent enough to knock orbits askew, or even lead to banishment. A long-lasting abundance of sibling planets might therefore have protected Earth from destructive chaos, and may be part of what made life on Earth possible, says astronomer Uffe Gråe Jørgensen of the Niels Bohr Institute in Copenhagen.
    “Is there something other than the Earth’s size and position around the star that is necessary in order for life to develop?” Jørgensen says. “Is it required that there are many planets?”
    Most of the 4,000-plus exoplanets discovered to date have elongated, or eccentric, orbits. That marks a striking difference from the neat, circular orbits of the planets in our solar system. Rather than being an oddity, those round orbits are actually perfectly normal — for a system with so many planets packed together, Jørgensen and his Niels Bohr colleague Nanna Bach-Møller report in a paper  published online October 30 in the Monthly Notices of the Royal Astronomical Society.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    Bach-Møller and Jørgensen analyzed the eccentric paths of 1,171 exoplanets orbiting 895 different stars. The duo found a tight correlation between number of planets and orbit shape. The more planets a system has, the more circular their orbits, no matter where you look or what kind of star they orbit.
    Earlier, smaller studies also saw a correlation between number of planets and orbit shapes, says astrophysicist Diego Turrini of the Italian National Astrophysics Institute in Rome. Those earlier studies used only a few hundred planets.
    “This is a very important confirmation,” Turrini says. “It is providing us an idea of … how likely it is there will be no fight in the family, no destructive events, and your planetary system will remain as it formed … long enough to produce life.”
    Systems with as many planets as ours are exceedingly rare, though. Only one known system comes close: the TRAPPIST-1 system, with seven roughly Earth-sized worlds (SN: 2/22/17). Astronomers have found no solar systems so far, other than ours, with eight or more planets. Extrapolating out to the number of stars expected to have planets in the galaxy, Jørgensen estimates that about 1 percent of planetary systems have as many planets as we do.
    “It’s not unique, but the solar system belongs to a rare type of planetary system,” he says.
    That could help explain why life seems to be rare in the galaxy, Jørgensen suggests. Exoplanet studies indicate that there are billions of worlds the same size as Earth, whose orbits would make them good places for liquid water. But just being in the so-called “habitable zone” is not enough to make a planet habitable (SN: 10/4/19).
    “If there are so many planets where we could in principle live, why are we not teeming with UFOs all the time?” Jørgensen says. “Why do we not get into traffic jams with UFOs?”
    The answer might lie in the different histories of planetary systems with eccentric and circular orbits. Theories of solar system formation predict that most planets are born in a disk of gas and dust that encircles a young star. That means young planets should have circular orbits, and all orbit in the same plane as the disk.
    “You want the planets to not come too close to each other, otherwise their interactions might destabilize the system,” says Torrini. “The more planets you have the more delicate the equilibrium is.”
    Planets that end up on elliptical orbits may have gotten there via violent encounters with neighboring planets, whether direct collisions that break both planets apart or near-misses that toss the planets about (SN: 2/27/15). Some of those encounters may have ejected planets from their solar systems altogether, possibly explaining why planets with eccentric orbits have fewer siblings (SN: 3/20/15).
    Earth’s survival may therefore have depended on its neighbors playing nice for billions of years (SN: 5/25/05). It doesn’t need to have escaped violence altogether, either, Jørgensen says. One popular theory holds that Jupiter and Saturn shifted in their orbits billions of years ago, a reshuffling that knocked the orbits of distant comets askew and send them careening into the inner solar system. Several lines of evidence suggest comets could have brought water to the early Earth (SN: 5/6/15).
    “It’s not the Earth that is important,” Jørgensen says. “It’s the whole configuration of the planetary system that’s important for life to originate on an earthlike planet.” More

  • in

    Giant lasers help re-create supernovas’ explosive, mysterious physics

    When one of Hye-Sook Park’s experiments goes well, everyone nearby knows. “We can hear Hye-Sook screaming,” she’s heard colleagues say.
    It’s no surprise that she can’t contain her excitement. She’s getting a closeup look at the physics of exploding stars, or supernovas, a phenomenon so immense that its power is difficult to put into words.
    Rather than studying these explosions from a distance through telescopes, Park, a physicist at Lawrence Livermore National Laboratory in California, creates something akin to these paroxysmal blasts using the world’s highest-energy lasers.
    About 10 years ago, Park and colleagues embarked on a quest to understand a fascinating and poorly understood feature of supernovas: Shock waves that form in the wake of the explosions can boost particles, such as protons and electrons, to extreme energies.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “Supernova shocks are considered to be some of the most powerful particle accelerators in the universe,” says plasma physicist Frederico Fiuza of SLAC National Accelerator Laboratory in Menlo Park, Calif., one of Park’s collaborators.
    Some of those particles eventually slam into Earth, after a fast-paced marathon across cosmic distances. Scientists have long puzzled over how such waves give energetic particles their massive speed boosts. Now, Park and colleagues have finally created a supernova-style shock wave in the lab and watched it send particles hurtling, revealing possible new hints about how that happens in the cosmos.
    Bringing supernova physics down to Earth could help resolve other mysteries of the universe, such as the origins of cosmic magnetic fields. And there’s a more existential reason physicists are fascinated by supernovas. These blasts provide some of the basic building blocks necessary for our existence. “The iron in our blood comes from supernovae,” says plasma physicist Carolyn Kuranz of the University of Michigan in Ann Arbor, who also studies supernovas in the laboratory. “We’re literally created from stars.”
    Lucky star
    As a graduate student in the 1980s, Park worked on an experiment 600 meters underground in a working salt mine beneath Lake Erie in Ohio. Called IMB for Irvine-Michigan-Brookhaven, the experiment wasn’t designed to study supernovas. But the researchers had a stroke of luck. A star exploded in a satellite galaxy of the Milky Way, and IMB captured particles catapulted from that eruption. Those messengers from the cosmic explosion, lightweight subatomic particles called neutrinos, revealed a wealth of new information about supernovas.
    But supernovas in our cosmic vicinity are rare. So decades later, Park isn’t waiting around for a second lucky event.
    Physicist Hye-Sook Park, shown as a graduate student in the 1980s (left) and in a recent photo (right), uses powerful lasers to study astrophysics.from left: John Van der Velde; Lanie L. Rivera/Lawrence Livermore National Laboratory
    Instead, her team and others are using extremely powerful lasers to re-create the physics seen in the aftermath of supernova blasts. The lasers vaporize a small target, which can be made of various materials, such as plastic. The blow produces an explosion of fast-moving plasma, a mixture of charged particles, that mimics the behavior of plasma erupting from supernovas.
    The stellar explosions are triggered when a massive star exhausts its fuel and its core collapses and rebounds. Outer layers of the star blast outward in an explosion that can unleash more energy than will be released by the sun over its entire 10-billion-year lifetime. The outflow has an unfathomable 100 quintillion yottajoules of kinetic energy (SN: 2/8/17, p. 24).
    Supernovas can also occur when a dead star called a white dwarf is reignited, for example after slurping up gas from a companion star, causing a burst of nuclear reactions that spiral out of control (SN: 4/30/16, p. 20).
    Supernova remnants like W49B (shown in X-ray, radio and infrared light) accelerate electrons and protons to high energies in shock waves.NASA, CXC, MIT L. Lopez et al (X-ray), Palomar (Infrared), VLA/NRAO/NSF (Radio)
    In both cases, things really get cooking when the explosion sends a blast of plasma careening out of the star and into its environs, the interstellar medium — essentially, another ocean of plasma particles. Over time, a turbulent, expanding structure called a supernova remnant forms, begetting a beautiful light show, tens of light-years across, that can persist in the sky for many thousands of years after the initial explosion. It’s that roiling remnant that Park and colleagues are exploring.
    Studying supernova physics in the lab isn’t quite the same thing as the real deal, for obvious reasons. “We cannot really create a supernova in the laboratory, otherwise we would be all exploded,” Park says.
    In lieu of self-annihilation, Park and others focus on versions of supernovas that are scaled down, both in size and in time. And rather than reproducing the entirety of a supernova all at once, physicists try in each experiment to isolate interesting components of the physics taking place. Out of the immense complexity of a supernova, “we are studying just a tiny bit of that, really,” Park says.
    For explosions in space, scientists are at the mercy of nature. But in the laboratory, “you can change parameters and see how shocks react,” says astrophysicist Anatoly Spitkovsky of Princeton University, who collaborates with Park.
    The laboratory explosions happen in an instant and are tiny, just centimeters across. For example, in Kuranz’s experiments, the equivalent of 15 minutes in the life of a real supernova can take just 10 billionths of a second. And a section of a stellar explosion larger than the diameter of Earth can be shrunk down to 100 micrometers. “The processes that occur in both of those are very similar,” Kuranz says. “It blows my mind.”
    [embedded content]
    Powerful, mysterious stellar explosions are difficult to understand from afar, so researchers have figured out how to re-create supernovas’ extreme physics in the lab and study how outbursts seed the cosmos with elements and energetic particles.
    Laser focus
    To replicate the physics of a supernova, laboratory explosions must create an extreme environment. For that, you need a really big laser, which can be found in only a few places in the world, such as NIF, the National Ignition Facility at Lawrence Livermore, and the OMEGA Laser Facility at the University of Rochester in New York.
    At both places, one laser is split into many beams. The biggest laser in the world, at NIF, has 192 beams. Each of those beams is amplified to increase its energy exponentially. Then, some or all of those beams are trained on a small, carefully designed target. NIF’s laser can deliver more than 500 trillion watts of power for a brief instant, momentarily outstripping the total power usage in the United States by a factor of a thousand.
    A single experiment at NIF or OMEGA, called a shot, is one blast from the laser. And each shot is a big production. Opportunities to use such advanced facilities are scarce, and researchers want to have all the details ironed out to be confident the experiment will be a success.
    When a shot is about to happen, there’s a space-launch vibe. Operators monitor the facility from a control room filled with screens. When the time of the laser blast nears, a voice begins counting down: “Ten, nine, eight …”
    “When they count down for your shot, your heart is pounding,” says plasma physicist Jena Meinecke of the University of Oxford, who has worked on experiments at NIF and other laser facilities.
    At the moment of the shot, “you kind of want the Earth to shake,” Kuranz says. But instead, you might just hear a snap — the sound of the discharge from capacitors that store up huge amounts of energy for each shot.
    Then comes a mad dash to review the results and determine if the experiment has been successful. “It’s a lot of adrenaline,” Kuranz says.
    At the National Ignition Facility’s target chamber (shown during maintenance), 192 laser beams converge. The blasts produce plumes of plasma that can mimic some aspects of supernova remnants.Lawrence Livermore National Laboratory
    Lasers aren’t the only way to investigate supernova physics in the lab. Some researchers use intense bursts of electricity, called pulsed power. Others use small amounts of explosives to set off blasts. The various techniques can be used to understand different stages in supernovas’ lives.
    A real shocker
    Park brims with cosmic levels of enthusiasm, ready to erupt in response to a new nugget of data or a new success in her experiments. Re-creating some of the physics of a supernova in the lab really is as remarkable as it sounds, she says. “Other­wise I wouldn’t be working on it.” Along with Spitkovsky and Fiuza, Park is among more than a dozen scientists involved in the Astrophysical Collisionless Shock Experiments with Lasers collaboration, or ACSEL, the quest Park embarked upon a decade ago. Their focus is shock waves.
    The result of a violent input of energy, shock waves are marked by an abrupt increase in temperature, density and pressure. On Earth, shock waves cause the sonic boom of a supersonic jet, the clap of thunder in a storm and the damaging pressure wave that can shatter windows in the aftermath of a massive explosion. These shock waves form as air molecules slam into each other, piling up molecules into a high-density, high-pressure and high-temperature wave.
    In cosmic environments, shock waves occur not in air, but in plasma, a mixture of protons, electrons and ions, electrically charged atoms. There, particles may be diffuse enough that they don’t directly collide as they do in air. In such a plasma, the pileup of particles happens indirectly, the result of electromagnetic forces pushing and pulling the particles. “If a particle changes trajectory, it’s because it feels a magnetic field or an electric field,” says Gianluca Gregori, a physicist at the University of Oxford who is part of ACSEL.
    But exactly how those fields form and grow, and how such a shock wave results, has been hard to decipher. Researchers have no way to see the process in real supernovas; the details are too small to observe with telescopes.
    These shock waves, which are known as collisionless shock waves, fascinate physicists. “Particles in these shocks can reach amazing energies,” Spitkovsky says. In supernova remnants, particles can gain up to 1,000 trillion electron volts, vastly outstripping the several trillion electron volts reached in the biggest human-made particle accelerator, the Large Hadron Collider near Geneva. But how particles might surf supernova shock waves to attain their astounding energies has remained mysterious.

    Magnetic field origins
    To understand how supernova shock waves boost particles, you have to understand how shock waves form in supernova remnants. To get there, you have to understand how strong magnetic fields arise. Without them, the shock wave can’t form.
    Electric and magnetic fields are closely intertwined. When electrically charged particles move, they form tiny electric currents, which generate small magnetic fields. And magnetic fields themselves send charged particles corkscrewing, curving their trajectories. Moving magnetic fields also create electric fields.
    The result is a complex feedback process of jostling particles and fields, eventually producing a shock wave. “This is why it’s so fascinating. It’s a self-modulating, self-controlling, self-reproducing structure,” Spitkovsky says. “It’s like it’s almost alive.”
    All this complexity can develop only after a magnetic field forms. But the haphazard motions of individual particles generate only small, transient magnetic fields. To create a significant field, some process within a supernova remnant must reinforce and amplify the magnetic fields. A theoretical process called the Weibel instability, first thought up in 1959, has long been expected to do just that.
    In a supernova, the plasma streaming outward in the explosion meets the plasma of the interstellar medium. According to the theory behind the Weibel instability, the two sets of plasma break into filaments as they stream by one another, like two hands with fingers interlaced. Those filaments act like current-­carrying wires. And where there’s current, there’s a magnetic field. The filaments’ magnetic fields strengthen the currents, further enhancing the magnetic fields. Scientists suspected that the electromagnetic fields could then become strong enough to reroute and slow down particles, causing them to pile up into a shock wave.
    In 2015 in Nature Physics, the ACSEL team reported a glimpse of the Weibel instability in an experiment at OMEGA. The researchers spotted magnetic fields, but didn’t directly detect the filaments of current. Finally, this year, in the May 29 Physical Review Letters, the team reported that a new experiment had produced the first direct measurements of the currents that form as a result of the Weibel instability, confirming scientists’ ideas about how strong magnetic fields could form in supernova remnants.
    For that new experiment, also at OMEGA, ACSEL researchers blasted seven lasers each at two targets facing each other. That resulted in two streams of plasma flowing toward each other at up to 1,500 kilometers per second — a speed fast enough to circle the Earth twice in less than a minute. When the two streams met, they separated into filaments of current, just as expected, producing magnetic fields of 30 tesla, about 20 times the strength of the magnetic fields in many MRI machines.
    “What we found was basically this textbook picture that has been out there for 60 years, and now we finally were able to see it experimentally,” Fiuza says.
    Surfing a shock wave
    Once the researchers had seen magnetic fields, the next step was to create a shock wave and to observe it accelerating particles. But, Park says, “no matter how much we tried on OMEGA, we couldn’t create the shock.”
    They needed the National Ignition Facility and its bigger laser.
    There, the researchers hit two disk-shaped targets with 84 laser beams each, or nearly half a million joules of energy, about the same as the kinetic energy of a car careening down a highway at 60 miles per hour.
    Two streams of plasma surged toward each other. The density and temperature of the plasma rose where the two collided, the researchers reported in the September Nature Physics. “No doubt about it,” Park says. The group had seen a shock wave, specifically the collisionless type found in supernovas. In fact there were two shock waves, each moving away from the other.

    Learning the results sparked a moment of joyous celebration, Park says: high fives to everyone.
    “This is some of the first experimental evidence of the formation of these collisionless shocks,” says plasma physicist Francisco Suzuki-Vidal of Imperial College London, who was not involved in the study. “This is something that has been really hard to reproduce in the laboratory.”
    The team also discovered that electrons had been accelerated by the shock waves, reaching energies more than 100 times as high as those of particles in the ambient plasma. For the first time, scientists had watched particles surfing shock waves like the ones found in supernova remnants.
    But the group still didn’t understand how that was happening.
    In a supernova remnant and in the experiment, a small number of particles are accelerated when they cross over the shock wave, going back and forth repeatedly to build up energy. But to cross the shock wave, the electrons need some energy to start with. It’s like a big-wave surfer attempting to catch a massive swell, Fiuza says. There’s no way to catch such a big wave by simply paddling. But with the energy provided by a Jet Ski towing surfers into place, they can take advantage of the wave’s energy and ride the swell.
    A computer simulation of a shock wave (structure shown in blue) illustrates how electrons gain energy (red tracks are higher energy, yellow and green are lower).F. Fiuza/SLAC National Accelerator Laboratory
    “What we are trying to understand is: What is our Jet Ski? What happens in this environment that allows these tiny electrons to become energetic enough that they can then ride this wave and be accelerated in the process?” Fiuza says.
    The researchers performed computer simulations that suggested the shock wave has a transition region in which magnetic fields become turbulent and messy. That hints that the turbulent field is the Jet Ski: Some of the particles scatter in it, giving them enough energy to cross the shock wave.
    Wake-up call
    Enormous laser facilities such as NIF and OMEGA are typically built to study nuclear fusion — the same source of energy that powers the sun. Using lasers to compress and heat a target can cause nuclei to fuse with one another, releasing energy in the process. The hope is that such research could lead to fusion power plants, which could provide energy without emitting greenhouse gases or dangerous nuclear waste (SN: 4/20/13, p. 26). But so far, scientists have yet to get more energy out of the fusion than they put in — a necessity for practical power generation.
    So these laser facilities dedicate many of their experiments to chasing fusion power. But sometimes, researchers like Park get the chance to study questions based not on solving the world’s energy crisis, but on curiosity — wondering what happens when a star explodes, for example. Still, in a roundabout way, understanding supernovas could help make fusion power a reality as well, as that celestial plasma exhibits some of the same behaviors as the plasma in fusion reactors.
    At NIF, Park has also worked on fusion experiments. She has studied a wide variety of topics since her grad school days, from working on the U.S. “Star Wars” missile defense program, to designing a camera for a satellite sent to the moon, to looking for the sources of high-energy cosmic light flares called gamma-ray bursts. Although she is passionate about each topic, “out of all those projects,” she says, “this particular collisionless shock project happens to be my love.”
    Early in her career, back on that experiment in the salt mine, Park got a first taste of the thrill of discovery. Even before IMB captured neutrinos from a supernova, a different unexpected neutrino popped up in the detector. The particle had passed through the entire Earth to reach the experiment from the bottom. Park found the neutrino while analyzing data at 4 a.m., and woke up all her collaborators to tell them about it. It was the first time anyone working on the experiment had seen a particle coming up from below. “I still clearly remember the time when I was seeing something nobody’s seen,” Park recalls.
    Now, she says, she still gets the same feeling. Screams of joy erupt when she sees something new that describes the physics of unimaginably vast explosions.

    Trustworthy journalism comes at a price.

    Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen – every contribution makes a difference.

    Subscribe or Donate Now More

  • in

    Culture Warlords review: An undercover examination of white supremacy

    Talia Lavin went undercover to join white supremacy groups that were abusing her online. Her book, Culture Warlords, makes for difficult reading

    Humans 11 November 2020
    By Donna Lu
    White nationalists marching in Charlottesville, Virginia, in 2017
    Reuters/Stephanie Keith

    Culture Warlords: My journey into the dark web of white supremacy
    Talia Lavin
    Octopus Books
    Book
    TALIA LAVIN awoke one day to discover a group of white supremacists using encrypted messaging app Telegram to discuss if she was “too ugly to rape”. A few weeks earlier, unknown to its members, she had joined the group.
    The writer and former New Yorker magazine fact checker didn’t feel prominent enough to warrant such vile comments. “I was mostly just a loudmouth on Twitter. Why was I taking up real estate in … More

  • in

    Evolution explains why social distancing due to covid-19 is so hard

    Hugs, handshakes and air kisses serve the same crucial purposes as animal greetings like sniffing, eye poking and buttock grabbing

    Humans 11 November 2020
    By David Robson
    We crave physical contact with family to reaffirm our bonds
    Willie B. Thomas/Getty Images

    ON 9 MARCH, Mark Rutte, the Dutch prime minister, called a press conference to discuss his country’s response to the covid-19 pandemic. “From now on, we stop shaking hands,” he declared – before promptly reaching out his hand to greet an expert on infectious diseases.
    Many of us can empathise. Social distancing sounds innocuous, but this year we have discovered how hard it can be in practice. Touchy-feely greetings, such as handshakes, hugs, kisses and nose rubbing, are deeply embedded in many cultures. These gestures aren’t merely learned, however. Look to the animal kingdom and you will see that many species – especially highly social ones – perform physical rituals when they approach each other. If our urges to touch one another in greeting seem instinctual, it is because they are.
    Greetings adopted by animals can be very different to our own – they include eye poking and other gestures that might make you squirm – but understanding these behaviours can give us an insight into human salutations. Examining the evolution of greetings throws light on the subtle ways they lubricate social interactions and also helps to explain why they are so diverse. As we are a super-social species, it isn’t surprising that many of us are struggling to adjust to the new normal. But the good news is that we are proven masters at adapting our greetings to fit new situations.
    Will our greetings change for good as a result of covid-19?
    Andreu Dalmau/Epa-Efe/Shutterstock

    Animal encounters
    Mammals tend to use scents to suss each other out, which explains why … More

  • in

    The Milky Way makes little galaxies bloom, then snuffs them out

    If you’re a small galaxy and want to mint new stars, come to the Milky Way — but don’t get too close if you want a long-lasting star-making career. New observations with the Gaia space telescope show that our galaxy is both friend and foe to the lesser galaxies that revolve around it.
    Some 60 known galaxies orbit the Milky Way. About a dozen of these satellite galaxies are dim dwarf spheroidals, which each emit just 0.0005 to 0.1 percent as much light as the Milky Way (SN: 12/22/14). Their few stars are spread out from one another, giving the galaxies such a ghostly appearance that the first one found was initially suspected to be only a fingerprint on a photographic plate.
    But these ghostly galaxies once sparkled with young stars. A new study finds that most of these galaxies lit up when they first crossed into our galaxy’s gravitational domain as fresh stars arose. But then, in most cases, the little galaxies stopped making stars soon afterward, because the Milky Way stripped the dwarf galaxies of gas, the raw material for star formation.
    Astronomer Masashi Chiba of Tohoku University in Sendai, Japan, and his then-graduate student Takahiro Miyoshi studied seven of the dwarf spheroidal galaxies orbiting the Milky Way. The researchers used the European Space Agency’s Gaia spacecraft, which had measured the galaxies’ motions, to compute their orbits around the Milky Way’s center. The orbits are elliptical, so the galaxies approach and then recede from our galaxy’s center. The astronomers then compared those paths to the times when the galaxies formed their stars.

    Sign Up For the Latest from Science News

    Headlines and summaries of the latest Science News articles, delivered to your inbox

    “We found that there’s a very nice coincidence between the timing of the first infall of the satellite [toward the Milky Way] and the peak in the star formation history,” Chiba says. In work posted online at arXiv.org on October 23, the astronomers attribute the burst of star formation in the small galaxies to the Milky Way. Encountering the giant galaxy squeezes the dwarf galaxies’ gas, causing that gas to collapse and spawn lots of new stars.
    As an example, the Draco dwarf galaxy first crossed into the Milky Way’s domain 11 billion years ago and formed numerous stars then — but never again. More recently, the Leo I dwarf galaxy entered our galaxy’s realm just 2 billion years ago, a time that coincided with its last burst of star birth. But today Leo I creates no new stars and, like Draco, has no gas to do so.
    Dwarf galaxies that kept their distance also kept their gas longer, the researchers found. The galaxies that came closest to the Milky Way’s center, such as Draco and Leo I, ceased all star formation soon after crossing the Milky Way’s frontier. However, the galaxies that entered our galaxy’s domain but remained farther out, such as Fornax and Carina, fared better.
    “Those two galaxies kept their interstellar gas inside them, so that the star formation still continued,” Chiba says. Both galaxies managed to eke out new stars for many billions of years after crossing into the Milky Way’s realm. Today, however, neither galaxy has any gas left.
    “I think it all makes sense,” says Vasily Belokurov, an astronomer at the University of Cambridge, who notes how essential the Gaia spacecraft was to the discovery. “It’s a beautiful demonstration of what we’ve never been able to do before Gaia, and suddenly we can do these magical things.” More