New easy-to-use optical chip can self-configure to perform various functions
Researchers have developed an easy-to-use optical chip that can configure itself to achieve various functions. The positive real-valued matrix computation they have achieved gives the chip the potential to be used in applications requiring optical neural networks. Optical neural networks can be used for a variety of data-heavy tasks such as image classification, gesture interpretation and speech recognition.
Photonic integrated circuits that can be reconfigured after manufacturing to perform different functions have been developed previously. However, they tend to be difficult to configure because the user needs to understand the internal structure and principles of the chip and individually adjust its basic units.
“Our new chip can be treated as a black box, meaning users don’t need to understand its internal structure to change its function,” said research team leader Jianji Dong from Huazhong University of Science and Technology in China. “They only need to set a training objective, and, with computer control, the chip will self-configure to achieve the desired functionality based on the input and output.”
In the journal Optical Materials Express, the researchers describe their new chip, which is based on a network of waveguide-based optical components called Mach-Zehnder interferometers (MZIs) arranged in a quadrilateral pattern. The researchers showed that the chip can self-configure to perform optical routing, low-loss light energy splitting and the matrix computations used to create neural networks.
“In the future, we anticipate the realization of larger-scale on-chip programmable waveguide networks,” said Dong. “With additional development, it may become possible to achieve optical functions comparable to those of field-programmable gate arrays (FPGAs) — electrical integrated circuits that can be reprogrammed to perform any desired application after they are manufactured.”
Creating the programmable MZI network
The on-chip quadrilateral MZI network is potentially useful for applications involving optical neural networks, which are created from networks of interconnected nodes. To use an optical neural network effectively, the network must be trained with known data to determine the weights between each pair of nodes — a task that involves matrix multiplication. More