Human disease simulator lets scientists choose their own adventure
Imagine a device smaller than a toddler’s shoebox that can simulate any human disease in multiple organs or test new drugs without ever entering — or harming — the body.
Scientists at Northwestern University have developed this new technology — called Lattice — to study interactions between up to eight unique organ tissue cultures (cells from a human organ) for extended periods of time to replicate how actual organs will respond. It is a major advancement from current in vitro systems, which can only study two cell cultures simultaneously.
The goal is to simulate what happens inside the body to analyze, for example, how obesity might affect a particular disease; how women metabolize drugs differently than men; or what might be initially driving a disease that eventually impacts multiple organs.
“When something’s happening in the body, we don’t know exactly who’s talking to whom,” said lead scientist Julie Kim, professor of obstetrics and gynecology at Northwestern University Feinberg School of Medicine. “Currently, scientists use dishes that have one or two cell types, and then do in-depth research and analysis, but Lattice provides a huge advancement. This platform is much better suited to mimic what’s happening in the body, because it can simulate so many organs at once.”
A study detailing the new technology will be published Oct. 3 in the journal Lab on a Chip.
Choose-your-own-adventure disease simulator
The microfluidic device has a series of channels and pumps that cause media (simulated blood) to flow between the eight wells. A computer connected to Lattice precisely controls how much media flows through each well, where it flows and when. Depending on which disease or drug the scientist wants to test, they can fill each well with a different organ tissue, hormone, disease or medication. More