Ensuring fairness of AI in healthcare requires cross-disciplinary collaboration
Pursuing fair artificial intelligence (AI) for healthcare requires collaboration between experts across disciplines, says a global team of scientists led by Duke-NUS Medical School in a new perspective published in npj Digital Medicine.
While AI has demonstrated potential for healthcare insights, concerns around bias remain. “A fair model is expected to perform equally well across subgroups like age, gender and race. However, differences in performance may have underlying clinical reasons and may not necessarily indicate unfairness,” explained first author Ms Liu Mingxuan, a PhD candidate in the Quantitative Biology and Medicine (Biostatistics & Health Data Science) Programme and Centre for Quantitative Medicine (CQM) at Duke-NUS.
“Focusing on equity — that is, recognising factors like race, gender, etc., and adjusting the AI algorithm or its application to make sure more vulnerable groups get the care they need — rather than complete equality, is likely a more reasonable approach for clinical AI,” said Dr Ning Yilin, Research Fellow with CQM and a co-first-author of the paper. “Patient preferences and prognosis are also crucial considerations, as equal treatment does not always mean fair treatment. An example of this is age, which frequently factors into treatment decisions and outcomes.”
The paper highlights key misalignments between AI fairness research and clinical needs. “Various metrics exist to measure model fairness, but choosing suitable ones for healthcare is difficult as they can conflict. Trade-offs are often inevitable,” commented Associate Professor Liu Nan also from Duke-NUS’ CQM, senior and corresponding author of the paper.
He added, “Differences detected between groups are frequently treated as biases to be mitigated in AI research. However, in the medical context, we must discern between meaningful differences and true biases requiring correction.”
The authors emphasise the need to evaluate which attributes are considered ‘sensitive’ for each application. They say that actively engaging clinicians is vital for developing useful and fair AI models.
“Variables like race and ethnicity need careful handling as they may represent systemic biases or biological differences,” said Assoc Prof Liu. “Clinicians can provide context, determine if differences are justified, and guide models towards equitable decisions.”
Overall, the authors argue that pursuing fair AI for healthcare requires collaboration between experts in AI, medicine, ethics and beyond. More