New technology could reduce lag, improve reliability of online gaming, meetings
Whether you’re battling foes in a virtual arena or collaborating with colleagues across the globe, lag-induced disruptions can be a major hindrance to seamless communication and immersive experiences.
That’s why researchers with the University of Central Florida’s College of Optics and Photonics (CREOL) and the University of California, Los Angeles, have developed new technology to make data transfer over optical fiber communication faster and more efficient.
Their new development, a novel class of optical modulators, is detailed in a new study published recently in the journal Nature Communications. Modulators can be thought of as like a light switch that controls certain properties of data-carrying light in an optical communication system.
“Carrying torrents of data between internet hubs and connecting servers, storage elements, and switches inside data centers, optical fiber communication is the backbone on which the digital world is built,” says Sasan Fathpour, the study’s co-author and CREOL professor. “The basic constituents of such links, the optical fiber, semiconductor laser, optical modulator and photoreceiver, all place limits on the bandwidth and the accuracy of data transmission.”
Fathpour says particularly the dispersion of optical fibers, or signal distortion over long distances, and noise of semiconductor lasers, or unwanted signal interference, are two fundamental limitations of optical communication and signal processing systems that affect data transmission and reliability.
He says their research has invented a unique class of optical modulators that simultaneously address both limitations by taking advantage of phase diversity, or varied timing of signals, and differential operations, or comparison of light signals.
By doing so, the researchers have created an advanced “light switch” that not only controls data transmission but does so while comparing the amount and timing of data moving through the system to ensure accurate and efficient transmission. More