A superatomic semiconductor sets a speed record
The search is on for better semiconductors. Writing in Science, a team of chemists at Columbia University led by Jack Tulyag, a PhD student working with chemistry professor Milan Delor, describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Semiconductors — most notably, silicon — underpin the computers, cellphones, and other electronic devices that power our daily lives, including the device on which you are reading this article. As ubiquitous as semiconductors have become, they come with limitations. The atomic structure of any material vibrates, which creates quantum particles called phonons. Phonons in turn cause the particles — either electrons or electron-hole pairs called excitons — that carry energy and information around electronic devices to scatter in a matter of nanometers and femtoseconds. This means that energy is lost in the form of heat, and that information transfer has a speed limit.
The search is on for better options. Writing in Science, a team of chemists at Columbia University led by Jack Tulyag, a PhD student working with chemistry professor Milan Delor, describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Rather than scattering when they come into contact with phonons, excitons in Re6Se8Cl2 actually bind with phonons to create new quasiparticles called acoustic exciton-polarons. Although polarons are found in many materials, those in Re6Se8Cl2 have a special property: they are capable of ballistic, or scatter-free, flow. This ballistic behavior could mean faster and more efficient devices one day.
In experiments run by the team, acoustic exciton-polarons in Re6Se8Cl2 moved fast — twice as fast as electrons in silicon — and crossed several microns of the sample in less than a nanosecond. Given that polarons can last for about 11 nanoseconds, the team thinks the exciton-polarons could cover more than 25 micrometers at a time. And because these quasiparticles are controlled by light rather than an electrical current and gating, processing speeds in theoretical devices have the potential to reach femtoseconds — six orders of magnitude faster than the nanoseconds achievable in current Gigahertz electronics. All at room temperature.
“In terms of energy transport, Re6Se8Cl2 is the best semiconductor that we know of, at least so far,” Delor said.
A Quantum Version of the Tortoise and the Hare
Re6Se8Cl2 is a superatomic semiconductor created in the lab of collaborator Xavier Roy. Superatoms are clusters of atoms bound together that behave like one big atom, but with different properties than the elements used to build them. Synthesizing superatoms is a specialty of the Roy lab, and they are a main focus of Columbia’s NSF-funded Material Research Science and Engineering Center on Precision Assembled Quantum Materials. Delor is interested in controlling and manipulating the transport of energy through superatoms and other unique materials developed at Columbia. To do this, the team builds super-resolution imaging tools that can capture particles moving at ultrasmall, ultrafast scales. More
